Search published articles


Showing 4 results for Interference

A. Eghtedary Naeeny, H. Ghadiri,
Volume 4, Issue 2 (7-2000)
Abstract

In order to find the critical period of weed control, the best time of weed control beginning (i.e. herbicide application time), and the length of weed control period (i.e. herbicide persistency) in corn, field experiments were conducted in Bajgah and Kooshkak in Fars Province in 1995 using a randomized complete block design with 14 treatments and four replications. Treatments consisted of different times of weed control beginnings (20, 30, 40, and 50 days after corn emergence), different duration of weed control periods (10, 20, and 30 days), a weedy check, and a weed-free check during the period of corn growth.

 In Kooshkak, a 10-day duration of weed control period had significantly lower corn yields than 20 and 30-day periods. In Bajgah, a 10-day weed control period had significantly lower corn yields than a 30-day period. Time of weed control beginning was not significant at both locations however, the interaction between beginning time and the duration period of weed control was significant. It appears in both locations that a minimum 20-day control period at the initial stages of corn and weed growth, and a minimum 30-day control period before corn pollination are necessary to prevent corn yield losses. In order to prevent corn leaf area decline at both locations, a 20-day weed control period until 40 days after crop emergence is necessary.


A. Abdulahi, R. Mohammadi,
Volume 11, Issue 42 (1-2008)
Abstract

  The response of bread wheat genotypes to weed interference was evaluated under dryland conditions. An experiment was conducted with 26 genotypes of bread wheat and two known cultivars, Sardari and Azar2, as checks in a strip plot (Split block) arrangement based on Randomized Complete Block Design (RCBD) with four replications in 2002-03 at Dryland Agricultural Research Institute, Srarood, Kermanshah. Weed-free and weedyconditions were assigned to horizontal factor with genotypes as vertical factor. Plant height, number of seeds per spike, number of spikes per square meter, grain yield, weed density and dry matter, and indices of Weed Interference Tolelance Index (WITI) and Competition Index (CI) were recorded. Mean comparison showed that genotypes 13, 1, 26 and 8 had higher grain yield than those of checks under both weed-free and weedy conditions. These genotypes also had higher WITI in comparison with the checks. According to CI values, genotypes No. 1, 9, 13, 26 and 27 including checks had a high potential of weed competition. Results of stepwise regression analysis based on WITI as the dependent variable indicated that the number of spike, plant height and number of seed per spike had positive and significant effects on WITI. On the wole, considering WITI and grain yield as two main attributes, genotypes 13, 26, 1 and 8 were selected as appropriate since they showed a high weed competitive ability and also produced higher grain yields under both weedy and weed-free conditions.


F. Sorkhy Lalelo, A. Dabbagh Mohammadi Nassab, A. Javanshir,
Volume 12, Issue 45 (10-2008)
Abstract

A pot experiment was designed to investigate the effects of full, above and below ground interactions of wheat with wild oat on leaf characteristics and root to shoot ratio. This experiment was conducted as a factorial based on randomized complete design with four replications. The treatments included four interference levels (above ground, below ground, above and below ground and check wheat and wild oat) and four wild oat densities (2, 4, 6 and 8 plants/pot).The effects of full and root interference on wheat and wild oat traits was greater than shoot interference. For both species, full and below ground interaction significantly decreased the number of leaves, flag leaf area and chlorophyll content of flag leaf compared to above ground interaction and control. All traits of wild oat were reduced by above ground interaction compared to control. Number of leaves of wheat and wild oat showed greatest susceptibility to interaction treatments. There was no significant different between full and root interference. When wild oat density increased, the number of leaves, flag leaf area and chlorophyll content of flag leaf of wheat decreased. With strongest competition followed by enhanced wild oat density, root to shoot ratio in wheat and wild oat increased, which indicates more susceptibility of shoot than root to interference mean competition. This ratio for wild oat was more than wheat, thus, it is concluded that wild oat has higher rooting ability compared to wheat.
R S.sharifi, A Javanshir, M Shakiba, K Ghasemi Golezani, A Mohamadi, Y Raei,
Volume 12, Issue 46 (1-2009)
Abstract

In order to study yield component and determinate the contribution of stem reserves to corn yield under effect of different densities and interference periods of sorghum, a factorial experiment based on randomized complete block design with three replications was conducted in 2002 on the Research Farm of the Faculty of Agriculture Tabriz University. Experimental factors were sorghum interference at different periods (0,14,28,42 days after corn emergence and also during plant life corn) with three densities (4,8,12 plants m-2). Characteristics of study were yield, yield component and the contribution of stem reserves to corn grain yield. The results showed that with increasing sorghum density and interference, corn yield components (except the number of grain rows) were decreased, due to shading and competition between plants for using available resources. Maximum grain yield and grain number per ear was obtained at pure corn plantation. With increasing sorghum density and interference periods grain yield decreased, and maximum corn yield loss was 38%, which occurred at the highest sorghum density and interference. Dry matter remobilization and contribution of stem reserves were significantly influenced by sorghum densities and interferences in corn grain yield. The highest contribution of dry matter remobilization and stem reserves to corn yield was obtained at maximum density and complete interference of sorghum. The least contribution of reserves was shown in pure corn plantation. This might be related to shading and competition between plants for light and other resources.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb