Search published articles


Showing 4 results for Irrigation Regime

M. Mahlooji, S.f. Mousavi, M. Karimi,
Volume 4, Issue 1 (4-2000)
Abstract

A study was conducted to determine irrigation scheduling of pinto bean and to evaluate the effect of its planting date. A split-plot with complete randomized block design with four replications was used at Isfahan University of Technology Research Station in Shervedan-Falavarjan, The main plots were three irrigation regimes of T1 to T3 (irrigation after 50±3, 70±3 and 90±3 mm evaporation from class A pan, respectively) and the sub-plots were two planting dates of May 28 and June 28.

The results showed that delayed planting from May to June caused earlier flowering, physiological maturity and reduction of 29.6% in grain yield. Grain yield in T1 to T3 treatments were 3585.1, 3510.5 and 1925.8 kg/ha, respectively. The difference between grain yields of T1 and T2 with T3 treatments were significant at 1% probability level. Biological yields at May 28 and June 28 planting dates were 8257.1 and 5535 kg/ha, respectively, which were significantly different. There was no significant difference between biological yields of T1 and T2 treatments. Number of pods per square meter was the most important component of grain yield and 85% of grain yield difference was due to this part. Harvest index was affected by irrigation treatment and planting date. Mean harvest indices for T1 to T3 treatments were 45.5, 46.1 and 37%, respectively, and 42.8% and 44.9% for the two planting dates. Water use efficiencies for grain yield in T1 to T3 treatments were 0.557, 0.556 and 0.329 kg/m3, respectively. Generally, treatment T2 was shown to be the best irrigation regime.


Gh. Khajouei Nejad, H. Kazemi, H. Alyari, A. Javanshir, M. J. Arvin,
Volume 9, Issue 4 (1-2006)
Abstract

This study was conducted to evaluate the effects of four levels of irrigation (irrigation of plants after I1 = 40, I2 =60, I3 = 80 , and I4 = 100mm of evaporation from class A pan) and four plant densities(D1 = 30, D2 = 40, D3 = 50 and D4 = 60 plants/m2) on the seed yield and seed quality in three soybean cultivars(V1=Hobit, V2=Williams and V3=Hill) in a split factorial design, based on the completely randomized blocks, with three replication for two years(2001 and 2002). The Irrigation treatments were assigned to the main plots, and the plant densities and cultivars to the sub plots. Results indicated that soybean seed yield was influenced by the different irrigation and plant density levels in the both years. Irrigation levels I2 produced the highest and I4 the lowest seed yield. It was also revealed that the plant density D3 produced the highest and D1 the lowest seed yields. Among the cultivars under investigation, V2 produced the highest and V3 the lowest seed yield . Seed oil and its protein contents both were affected significantly by the irrigation levels, plant densities and cultivars in both years. The plants receiving I1 treatment had the highest and those having I4, the lowest percentages of seed oil. Changes in the plant densities also affected seed oil and protein content. The plant density of D1 caused the seeds to have the highest oil and lowest protein percentages. However, D4 decreased oil and increased protein percentages. The highest water use efficiency was obtained from I3 and that of the lowest value from I1. The results also indicated that D4 had the highest and D1 the lowest water use efficiencies. Therefore, it could be concluded that the water use efficiency can be increased by increasing the plant density per unit area. The highest efficiency for biological and grain yield belonged to V2 and V1 respectively where as the lowest efficiency for those two mentioned characters belonged to V1 and V3, respectively. However, the treatment I2V2D2 is recommended for higer the seed yield production per unit area.
M. Navabian, M. Aghajani,
Volume 16, Issue 60 (7-2012)
Abstract

In Guilan province, Sefidrud River, as the main source of irrigating rice in Guilan province, has been subjected to increasing salinity and a decreasing discharge because of decreasing in the volume of sefidrud dam, diverting water upstream and entering different sewages into the river. This research tries to determine optimum irrigation depth and intermittent periods in proportion to salinity resistance at different growth stages using optimization- simulation model. After calibration, Agro-hydrological SWAP model was used to simulate different growth stages of rice. Optimization results were obtained for managing fresh and saline intermittent water, 8-day intermittent period, for salinity of 0.747 dS/m in sensitive maturity stage and salinity of 3.36 dS/m in resistant vegetative, tiller and harvest growth stages. It is suggested that the depth of irrigation water be 1, 3, 3 and 5 cm for vegetative, tiller, maturity and harvest stages, respectively. Comparing managements of irrigation and saline based on the resistance of different growth stages to salinity and exploitation of irrigating water with a constant salinity during growth periods of the plant showed that irrigation management based on resistance of different growth periods of the plant to salinity causes rice yield to be improved by 23percent.
J. Khajehali, M. Kohansal, B. Hatami, M. Mobli,
Volume 22, Issue 2 (9-2018)
Abstract

The grape leafhopper, Arboridia kermanshah Dlabola (Hemiptera, Cicadellidae), is an economically important pest of most vineyards in Isfahan. The effects of two irrigation regimes [normal (100 liter/ tree/ week) and minimum (100 liter/ tree/two weeks)] seasonal population changes and the damage of A. Kermanshah as well as  the percentage of leafhopper egg parasitism by Anagrus atomus were studied on five grape cultivars including Shahani, White Rishbaba, Askari, Black Rishbaba and White Yaghoti; this was done in a completely randomized blockdesign with split plots in three replications at  Isfahan University of Technology in the  2005-2006 period. Adults and nymphs were assessed by weekly sampling using a vacuum insect collector (D-VAC). Non-parasitized and parasitized eggs were counted weekly by clipping three leaves from different strata of vine canopy as a sample unit, in each plot. The results showed that the leafhopper population density, damage percentage and egg parasitism in both years of study in the normal irrigation plots were higher than those with the minimum irrigation. The maximum density of adults and nymphs was observed in June and early July on the White Yaghoti. The highest egg density and parasitism were recorded in June and October-November, respectively, on black Rish-baba in the normal irrigation. The highest damage was on the white Yaghoti in August and September, and the lowest damage was on Askari and Shahani, both in the normal irrigation regime.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb