Search published articles


Showing 2 results for Isolation

G. Saadaat Zorieyeh, E. Adhami, R. Naghiha, H. R. Owliaie, R. Mostowfizadeh-Ghalamfarsa,
Volume 19, Issue 73 (11-2015)
Abstract

The present study was conducted to isolate and identify phosphorus solubilizing fungi and to evaluate their ability through a qualitative and quantitative experiment. An experiment was carried out with 5 soil samples of Koh- Sepid Lar, Kohgyloyeh and Boyer Ahmad province. The ability of isolates was studied in solid and liquid cultures. Quantitative experiment consisted of blank, four fungi isolates and Aspergilus niger, with 3 replications. Two fungi that showed the highest potential in P solubilization were used for identification by ITS- PCR methods. Four of the fungi produced very clear zone on the Pikovskaya culture. The order of soluble P content in the liquid culture was: blank< fungi 4< fungi 3< fungi 2< Aspergilus niger< fungi 1. Two high potential isolates, 1 and 2, were Cladosporium cladosporioides and Eupenicillium rubidurum, respectively. This is the first report about the potential of these fungi to solubilize P.


M. Jamali Jezeh, Mohammad Shayannejad, S. M Hejazi,
Volume 24, Issue 4 (2-2021)
Abstract

Water resources are limited in many areas of the world; sometimes, even these limited resources are negligently contaminated. One of the polluting factors of water is oil and its derivatives. Oil absorption using textiles is one of the common ways to separate oil from water. In this study, we used three types of textiles with different properties in order to make the filter. The experiments were performed using three different concentrations of 10, 20 and 30% oil. In this study, three types of BC, PET and PP textiles in the presence of horizontal and vertical drainages were investigated. The PET and PP textiles were made of nonwoven polyester and polypropylene fibers, respectively, and the BC textile was a two-component nonwoven textile of both polyester and polypropylene fibers that was used for the first time. Flow through the textiles was turbulent. Coefficients of flow were calculated using non-Darcy flow relations and the optimization method. The results showed that at low oil concentrations, the oil absorption had an inverse relation with the porosity and turbulent flow coefficients, but at higher concentrations, the effect of these agents was less; instead, the effect of the concentration and the intrinsic ability of the non-woven fibers was greater.  The best performance was related to PP and PET with the horizontal drainage that had 95 and 91 absorption rates, respectively.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb