Showing 19 results for Kar
M. Shafai Bajestan, M. Ostad Asgari,
Volume 4, Issue 2 (7-2000)
Abstract
The application of “Modified Einstein Procedure” is recommended by the Specialized Committee on Sediment, Iranian Ministry of Energy. However, this method has not been applied to any river in the country. It is the purpose of this study to investigate the total sediment load of the Karun and Karkheh rivers at Ahwas and Hamidieh stations.
The graphical calculations of the method are very complicated and time consuming. Therefore, a mathematical model has been developed in this study to improve the accuracy, simplicity and speed of computations. The required data were obtained from the above stations for seven years (1988-95), and applying these data, the total sediment load was calculated using the model. The bed load for the above stations was also computed and the ratio of bed load to total sediment load was calculated. In addition, measured data from East Fork river (in USA) were applied to examine the accuracy of the method in estimating the bed load. Comparison of the measured and computed results shows that the “Modified Einstein Procedure” estimates the amount of bed load with a high accuracy. The relationship between the bed load and suspended load and also between the total load and the stream discharge have also been established.
Finally, it is concluded that the “Modified Einstein Procedure” with minor modifications can be successfully applied for the above-mentioned rivers of Karun and Karkheh.
R. Khorasani, G.h. Haghnia,
Volume 6, Issue 3 (10-2002)
Abstract
The presence of large amounts of calcium in the equilibrium system of calcareous soils of arid and semi-arid regions affects the chemical reactions of soluble and exchangeable phases. Exchange phenomenon is one of these chemical reactions in which calcium plays an important role. K-Ca equilibria are important equilibria in calcareous soils and may be an answer to many problems in soil chemistry and fertility, specifically on the availability of potassium. Little work of this nature has been done in Iran. In this work, a variety of calcareous soil samples from northern Khorasan were examined. First, regression equation between potassium adsorption ratio (KAR) and exchangeable potassium ratio (EKR) in 26 soil samples was found to be EKR=0.02+2.48KAR, R2=0.77. Gapon exchange selectivity coefficient (KG) was estimated as 2.48 for the soils. Furthermore, in 14 calcium saturated soil samples, different concentrations of K were added until equilibrium was reached and EKR and KAR relations were determined for each soil with a regression coefficient higher than 0.91. KG ranged between 1.21 to 3.34. For the potassium range used in the soils studied, KG was constant and almost matched the KG obtained from EKR and KAR relation of the first step. Based on this equation, the effect of soluble K on exchange K in the presence of Ca and Mg as dominant cations in calcareous soils may be evaluated.
M. Shafaei Bajestan, M. Salimi Golshaikhi,
Volume 6, Issue 4 (1-2003)
Abstract
Downslope soil movement along riverbanks is a significant erosion process. Plant roots, particularly of woody vegetation, apparently stabilize soil on slopes because in most areas where the vegetation is removed, frequent bank failure occurs. Plant roots increase soil-shearing resistance both directly by mechanical reinforcement and indirectly through removal of pore water by transpiration. In this study, the effects of two plant species on the stability of the Karoon River has been investigated. To determine the In-situ shear strength of soil, a special device was designed and manufactured. This device is capable of measuring the shear strength of soil blocks as large as two cubic meters. In this study, twelve soil blocks, four blocks with roots of each tree and four blocks of root permitted were measured.
Comparison of the soil shear strength with roots and root permitted soil shows that tree roots can significantly increase the shear strength of the soil. The amount of increase depends on the type of plant, the age of plant, the diameter of the roots and the percentage of roots in the block. In this study, the amount of increase varied between 20-66%. From the analysis of the data, two equations were developed to determine the increased shear strength.
A. R. Nasirzadeh, F. Ansari-Asl,
Volume 11, Issue 1 (4-2007)
Abstract
A karyotypic study was performed on seven species of Hordeum Genus including, H. vulgare, H. spontaneum, H. glaucum, H. distichon, H. geniculatum , H. bulbosum and H. violaceum. According to the cytological studies in the laboratory, chromosome numbers and ploidy levels of species were identified. Chromosome analysese including the length of each chromosome, long and short arms length and long - short arm ratio were also done. For each species, the karyotype as an ideogram was drawn. The results showed that H. geniculatum, H. bulbosum, and H. violaceum were tetraploid (2n=4x=28) and the other species were diploid (2n=2x=14). Chromosomal study of H. geniculatum and H. distichon is reported for the first time from Iran. Karyotypic formula showed that the diploid species were 7m and tetraploid were 12m +2sm. According to the karyotypic symmetry, all species were in the 1A class. Using the S%, TF%, D.R.L., T.V. and X parameters, karyotypic symmetry of species was analyzed and determined.
M.r. Ghanbarpour , M. Teimouri, S.h. Gholami,
Volume 12, Issue 44 (7-2008)
Abstract
Estimating the volume of groundwater contribution to runoff within a watershed is one of the most important subjects in water resources management and hydrology. In this paper, groundwater contribution to total runoff as a base flow index was estimated using hydrograph separation in six stream gauging stations in southwest of Iran. The major objective of this research is to distinguish the most suitable automated hydrograph separation and base flow estimation method. Conventional automated hydrograph separation methods including local minimum and recursive digital filter with the parameter of 0.9 to 0.975 were compared with recession analysis numerically and graphically. The results showed that recursive digital filter with the parameter of 0.925 is the most accurate method to estimate base flow in the studied watersheds. This research also indicated that the base flow index estimated through the selected method varies from 0.79 to 0.88 in the study area.
B Kavoosi, S Eshghi, A Tafazoli,
Volume 13, Issue 48 (7-2009)
Abstract
Overcroping, shading and short growing season can reduce the pool of carbohydrate reserves, and consequently reduce the quality of crop in grapevines. An experiment was conducted in order to study the effects of cluster number and different levels of cane topping on balanced yield and qualitative traits of table grape (Vitis vinifera L.) cv. Askari. The design of experiment was factorial in completely randomized blocks with four replications. Factors included cluster number (Control, 25, 30, 35, 40, 45 and 50 cluster per vine) and cane topping included (Control, removal 1/4, 1/3 and 1/2 length of shoot). Results showed that decreasing the number of cluster to 25-35 per vine, significantly increased %TSS, TSS/TA and pH but with increasing cluster number, these traits were significantly reduced. Thinning treatment to 25 cluster showed significant difference from the viewpoint of %TA compared with untreated control. Also topping treatment significantly increased %TSS, %TA, TSS/TA ratio and decreased % TA compared with untreated control. Reducing the cluster to 25-45 per vine significantly increased cluster weight, however, no significant difference was observed between control and 50 clusters per vine and/or 25 to 50 clusters. Yield per vine was reduced in all treatments in comparison with untreated control. However, no difference was shown between 25 to 35 and or 40 and 50 clusters per vine. According to the results obtained, cluster thinning combined with topping can be recommended for increasing fruit quality and balanced yield of Askari table grapes in cold climate of Cisakht region.
H Tabari, S Marofi, H Zare Abiane, R Amiri Chayjan, M Sharifi, A.m Akhondali,
Volume 13, Issue 50 (1-2010)
Abstract
In mountainous basins, snow water equivalent is usually used to evaluate water resources related to snow. In this research, based on the observed data, the snow depth and its water equivalent was studied through application of non-linear regression, artificial neural network as well as optimization of network's parameters with genetic algorithm. To this end, the estimated values by artificial neural network, neural network-genetic algorithm combined method and regression method were compared with the observed data. The field measurement were carried out in the Samsami basin in February 2006. Correlation coefficient (r) mean square error (MSE) and mean absolute error (MAE) were used to evaluate efficiency of the various models of artificial neural networks and nonlinear regression models. The results showed that artificial neural network and genetic algorithm combined methods were suitable to estimate snow water equivalent. In general, among the methods used, neural network-genetic algorithm combined method presented the best result (r= 0.84, MSE= 0.041 and MAE= 0.051). Of the parameters considered, elevation from sea level is the most important and effective to estimate snow water equivalent.
A. H. Gharehsheikhloo , M. R. Vahabi , H. R. Karimzadeh ,
Volume 14, Issue 53 (10-2010)
Abstract
In order to classify and determine the plant communities in Karkas mountainsides, central Iran, quantitative data of 46 environmental characteristics including climate (12 characteristics), soil (26 characteristics), geology and physiology (8 characteristics), were analyzed based on partial Euclidean distance indicator using minimum variation method. The results showed the clustered separation of studied sites at 68% similarity level with three different growth places. Of these 46 factors, 24 factors (8 climate characteristics and 16 soil characteristics) were effective in this classification at 95% certainty level. Only 24 of these 46 factors were effective in this classification at 95% certainty level. These 24 effective factors were divided into 8 climate and 16 soil characteristics. In another classification, combinational percentage index of 17 plant species were investigated as an effective factor in separating growth place and determining the plant communities. Result of cluster classification indicated that the studied sites cold be classified to 3 habitats.
S. S. Eslamian, M. Ghasemi, S. Soltani Gerdefaramarzi,
Volume 16, Issue 59 (4-2012)
Abstract
In this study, in order to determe low flow conditions in Karkhe watershed, 5 indices of Q7,10, Q7,20, Q30,10, Q4,3 and Q95 were used for analyzing 12 hydrometric station data in the years of 1345-46 to 1380-81. Discharge data homogeneity was performed by Run Test. The Q95 index was determined by flow duration curve (FDC) and other indices were determined using 4, 7 and 30-day low flow frequency analysis. After calculating the indices, periods of low flows were determined. The indices were regionalized by Kriging method. The results showed that for the most stations, low stream flows happened in the years of 1345-46, 1377-78, 1378-79, 1379-80 and 1380-81 and the percentages of stations having low flows in these years were 68, 92, 84, 75 and 59, respectively. According to the regional maps of low flows in Karkhe watershed, maximum low flows are located in central and southern areas and all of the mentioned indices decrease from south to the north of this watershed.
S. Baghbanpour* and S. M. Kashefipour, ,
Volume 16, Issue 61 (10-2012)
Abstract
Rivers as a main sources of supplying water for urban areas, agriculture and industry, are very important. This point reveals the necessity of the control, improvement and solving the problems of rivers, especially all problems relating to water quality. In this study, transport of the suspended sediment is numerically modeled. The Saint-Venant hydrodynamic equations and also advection-dispersion equation (ADE) are applied for modelling flow and suspended sediment transport. It is necessary to choose appropriate empirical and/or semi-empirical equation to accurately estimate the equilibrium suspended sediment discharge, as well as the appropriate equation describing longitudinal dispersion coefficient. In this research, 5 and 6 equations were applied in the ADE for estimating equilibrium suspended sediment discharge and longitudinal dispersion coefficient, respectively. 30 combinations of these equations were made and the final model was run for each of them separately. Comparison of the predicted suspended sediment concentrations and the corresponding measured values at the survey site, Abdelkhan Station, for the calibration and verification periods showed that the combination of the Van Rijn's equilibrium suspended sediment equation and the Fischer's longitudinal dispersion equation performed very well. The maximum percentages of errors in estimation of suspended sediment concentrations were 19.56% and 26.3% for the calibration and verification periods, respectively.
H. R. Moradi, M. Rahmati, H. Karimi,
Volume 22, Issue 1 (6-2018)
Abstract
Groundwater is a major source of drought. Karstic aquifers are important sources of groundwater in the West and Kermanshah province. This study was performed to investigate the effects of the meteorological drought on the karstic aquifer with different conditions of development. The studied areas in this research included two karstic aquifers, Bistoon-Parau and Patagh mountain in Kermanshah province. In this study, we used monthly precipitation and springs discharge during a period of 20 years. Accordingly, the SPI and SDI indices were used to investigate the different states of meteorological and hydrological droughts, respectively. To determine the relationship between meteorological droughts and groundwater, Pearson correlation was used; aalso, to determine the time delay, the correlation between the different time conditions (no delay and delay 1 to 6 months) of the SDI index and the SPI index was investigated. The results of the relationship between the meteorological drought and groundwater showed that both had a significant correlation (p-value: 0.01). Also, based on the results of the correlation between different time conditions (no delay and delay 1 to 6 months) ,the SDI index was compared to the SPI index, showing that the time delay between the occurrence of meteorological drought and groundwater in the studied areas without time delay or a maximum one-month delay had happened. Based on the results, Pearson correlation coefficients between the SPI and SDI indices in the Bistoon-Parav region were more than those of the Patagh mountain region indicating the development of the Bistoon-Parav karst region, as compared with the Patagh Mountain.
A. Haghizadeh, H. Yousefi, P. Nourmohammadi, Y. Yarahmadi,
Volume 22, Issue 3 (11-2018)
Abstract
To determine the potential for groundwater contamination, vulnerability should be evaluated in different areas susceptible to contamination should be investigated. Aquifer (carbonate) karst or part of it is karst aquifer in the western region of Iran; due to the natural conditions of the region and human activities, they are susceptible to contamination by carbonate aquifer through holes devourer and feeding point leading to pollution. The aim of this study was to analyze aquifer vulnerability zoning map karst plain elster by using COP. This model uses three parameters including lining (O) the concentra flow(C) and precipitation regime (P) to assess the vulnerability of groundwater against pollution GIS software. The results showed that the plain with an area 7.8 km2 was dominated in terms of vulnerability, being in the middle class. Other classes, respectively, were low with the area 18.69 km2, high with the area 0.65 km2 as part of the northeast plain, and much less with the area of 0.6 km2 , The results of the sensitivity analysis also showed that at the factorization (P) due to appropriate rainfall area, the maximum impact was in determining the vulnerability of the area. And the factor (C) minimum has impact on determining the vulnerability of the area. Due to the small size of the mature karst area, the wide extent of non-karst region was shown for the verification of results related to electrical conductivity data (EC) against discharge wells in the region with the high vulnerability and moderate. A comparison was made too.
K. Mohammadi Babadi, A. Nikbakht Shahbazi, H. Fathian,
Volume 24, Issue 2 (7-2020)
Abstract
The purpose of this study was to investigate the relationship between time and spatial features of meteorological, hydrological and agricultural droughts in Karoon 1 Dam basin. Meteorological and statistical data were accordingly selected to evaluate the drought situation between 1993 and 2016. The results showed that hydrological droughts occurred in the meteorological drought and had a very high correlation with this year's meteorological drought. The most severe droughts occurred between 2006 and 2011. Studies also showed that every three years, the basin was accompanied by a meteorological drought and then a hydrological drought. The results also showed that the highest correlation was observed with the 12-month meteorological index, with a delay of 3 months, and the 6-month meteorological and hydrological index with a delay of 3 months and a three-month hydrological drought index with a delay of two months. Therefore, it could be concluded that hydrological droughts showed a delay of almost two to three months in the entire catchment area; since this period was 4 months or more, the correlation between these two indicators was eliminated and decreased. Also, due to drought zones, during the period from 1993 to 2009, most of the droughts were caused by rainfall reduction in the southwest of the province, and this was associated with a reduction in runoff in its hydrometric stations. Of course, in 2009-2012, the runoff status had been temporarily improved, and from 2012 to 2017, the drought situation had again returned spatially to the previous routine.
M. Alinezhadi, S. F. Mousavi, Kh. Hosseini,
Volume 25, Issue 1 (5-2021)
Abstract
Nowadays, the prediction of river discharge is one of the important issues in hydrology and water resources; the results of daily river discharge pattern could be used in the management of water resources and hydraulic structures and flood prediction. In this research, Gene Expression Programming (GEP), parametric Linear Regression (LR), parametric Nonlinear Regression (NLR) and non-parametric K- Nearest Neighbor (K-NN) were used to predict the average daily discharge of Karun River in Mollasani hydrometric station for the statistical period of 1967-2017. Different combinations of the recorded data were used as the input pattern to predict the mean daily river discharge. The obtained esults indicated that GEP, with R2= 0.827, RMSE= 59.45 and MAE= 26.64, had a better performance, as compared to LR, NLR and K-NN methods, at the validation stage for daily Karun River discharge prediction with 5-day lag, at the Mollasani station. Also, the performance of the models in the maximum discharge prediction showed that all models underestimated the flow discharge in most cases.
S. Jafari, M. Karimzadeh, A. Abdeshahi,
Volume 25, Issue 2 (9-2021)
Abstract
Characteristics of most soils in arid and semi-arid regions affected by carbonates. The study aimed to determine the distribution of carbonates in the size components of some soils in Khuzestan province. Upward to the bottom of Karun, Karkheh, and Jarahi rivers were studied at depths of 0-50, 50-100, and 150-100 cm. The results showed that the average amount of carbonates in the soils of the Jarahi river basin (37%) was significantly different from the amount in the soils of the other two rivers (33%). Carbonates were observed in all soil size components but the maximum was present in the clay component. The highest regression relationship between soil particles was in the clay component (0.375). The highest percentage of particle reduction after carbonate removal was related to coarse silt particles (0.75). Therefore, the soil texture changed from clay in Jarahi, from clay and silty clay in Karun, and silty clay in Karkheh due to the removal of carbonates to sandy loam. There was no significant difference in the distribution of carbonates at different depths for river soils and all studied soils. The relatively uniform distribution of carbonates in the four components studied in these soils from the surface to the depth showed that the carbonates originated from the parent material, namely alluvial flood sediments of these rivers.
S. H. Roshun, K. Shahedi, M. Habibnejad Roshan, J. Chormanski,
Volume 25, Issue 2 (9-2021)
Abstract
The simulation of the rainfall-runoff process in the watershed has particular importance for a better understanding of hydrologic issues, water resources management, river engineering, flood control structures, and flood storage. In this study, to simulate the rainfall-runoff process, rainfall and discharge data were used in the period 1997-2017. After data qualitative control, rainfall, and discharge delays were determined using the coefficients of autocorrelation, partial autocorrelation, and cross-correlation in R Studio software. Then, the effective parameters and the optimum combination were determined by the Gamma test method and used to implement the model under three different scenarios in MATLAB software. Gamma test results showed that today's precipitation parameters, precipitation of the previous day, discharge of the previous day, and discharge of two days ago have the greatest effect on the outflow of the basin. Also, the Pt Qt-1 and Pt Pt-1 Qt-1 Qt-2 Qt-3 combinations were selected as the most suitable input combinations for modeling. The results of the modeling showed that in the support vector machine model, the Radial Base kernel Function (RBF) has a better performance than multiple and linear kernels. Also, the performance of the Artificial Neural Network model (ANN) is better than the Support Vector Machine model (SVM) with Radial Base kernel Function (RBF).
M. Pajouhesh, H. Shekohideh, Z. Heydari,
Volume 25, Issue 3 (12-2021)
Abstract
Land use changes identifying to assess and monitor sensitive areas for sustainable planning and land management is essential. Remote sensing and the use of GIS technology as some of the most common methods in the world in monitoring land changes, especially, in the study of large areas. In this study, the trend of spatial land use changes in the area of Karun 3 dam was investigated. in the before and after the construction periods and dam intake using remote sensing and GIS over 27 years. In this study, the satellite imagery of Landsat 5 TM sensors from 1991 and 2008 and Landsat 8 OLI sensors in 2018 were analyzed and processed. Using object-oriented classification with land use maps for the three periods 1991, 2008, and 2018 with the overall accuracy of the Kappa index of 0.93 and 0.89 percent for 1991, 0.94, and 0.88 percent in 2008 and 0.93, respectively, and 0.86% in 2018 was prepared. The results showed that the water use of the region with an area of 37.68 square kilometers is increasing and agricultural lands and residential areas with an area of 1349.04 and 226.56, respectively, forest lands with an area of 1041.49 remained as the dominant cover of the region and rangelands by going through a decreasing trend of increase in both periods after forest use, with an area of 878.87, they had the largest area. According to the obtained results, it can be said that the construction of the Karun 3 dam has caused the flooding of agricultural lands and their conversion to another use, as a result of which the villagers were forced to migrate due to losing their jobs and abandoned residential areas become other uses.
S. Parvizi, S. Eslamian, M. Gheysari, A.r. Gohari, S. Soltani Kopai, P. Mohit Esfahani,
Volume 26, Issue 3 (12-2022)
Abstract
Investigation of homogeneity regions using univariate characteristics is an important step in the regional frequency analysis method. However, some hydrological phenomena have multivariate characteristics that cannot be studied by univariate methods. Droughts are one of these phenomena their definition as univariate will not be effective for risk assessment, decision-making, and management. Therefore, in this study, the regional frequency analysis of drought was studied in multivariate methods using SEI (Standardized Evapotranspiration Index), SSI (Standardized Soil Moisture Index), and SRI (Standardized Runoff Index) indices in the Karkheh River basin from 1996 to 2019. The indices calculated probabilistic distribution between the variables of evapotranspiration, runoff, and soil moisture using multivariate L-moments method and Copula functions and considered meteorological, agricultural, and hydrological droughts simultaneously. The results of multivariate regional frequency analysis considering the Copula Gumbel as the regional Copula showed that the basin is homogeneous in terms of severity of SEI-SSI combined drought indices and is heterogeneous in terms of severity of SEI-SSI combined drought indices. However, after clustering the basin into four homogeneous areas in terms of characteristics of SPI (Standardized Precipitation Index), the basin is homogeneous in all areas in terms of univariate SEI, SSI, and SRI indices and is heterogeneous in the third and fourth clusters of SRI and SSI drought indices. Pearson Type (III), Pareto, normal, and general logistics distribution functions were found suitable to investigate the characteristics of SEI, SSI, and SRI drought indices in this case. Finally, large estimates of the types of combined droughts and their probability of occurrence showed that the northern and southern parts of the Karkheh River basin will experience short and consecutive droughts in the next years. Droughts in areas without meteorological data can be predicted in terms of joint probability using the multivariate regional frequency analysis method proposed in this study.
R. Khalaf, A.m. Akhoond-Ali, Saeid Soltani, K. Rezazadeh,
Volume 27, Issue 1 (5-2023)
Abstract
Due to developing abstractions and their impacts on surface runoff, the recorded flow has been changed by human activities in most water gauging stations. Therefore, there is not found natural regime in the catchments. Accordingly, the objective of naturalization is to remove the effect of human activity factors and determine the actual amount of the river flow before the abstraction and the upstream development. Researchers have presented different methods that are mainly based on volume budget. In this way, this research presented the conventional methods as well as investigated their weak points. These new and innovative methods have been applied based on the available data. The methods have been planned based on the net consumption in which, the different types of water demands related to the upstream of each hydrometric station, are estimated for each month of a long-term series. Then, the amount of natural flow is determined by adding them to the observed flow. The accuracy and validation of the results are investigated by comparing the observed and calculated flow. As a case study, this method was utilized and implemented for Tireh and Marbareh sub-basins in Dez as well as Solgan and Beheshtabad sub-basins in the Karun basin. The results showed the role of the human activity factors decreasing the long-term outflow in the Tireh basin a 23.2%, in the Marbareh basin a 28.7%, in the Vanak watershed a 26%, and in the Beheshtabad basin a 9.5%. The results validation indicated the appropriate compatibility of the observational and estimated data for the control points (the stations). In this research, natural flow is obtained by presenting a practical method based on available information in the country. The proposed method has been in the preliminary stages. To verify and comprehend it, it should be used in future research on the interaction of surface and underground water and the use of new technologies such as remote sensing.