Search published articles


Showing 2 results for Labyrinth Spillway

M. Yasi, M. Mohammadi,
Volume 11, Issue 41 (10-2007)
Abstract

  A labyrinth spillway is an overflow spillway to regulate and control flow in canals, rivers and reservoirs. The main hypothesis for the development of such a spillway is to increase the discharge per unit width of structure for a given headwater. This type of structure is often an efficient alternative to a gated-spillway type where either the increase of the flood-passage capacity or the control of the water surface upstream is concerned. This study was aimed to investigate the hydraulic performance of labyrinth spillways of general trapezoidal planform with simple curved apexes. In the experimental work, twelve spillway models with double cycles were considered using three different curved apexes (R/w= 0.15, 0.2, 0.25), each with four different crest heights (w/P= 1.5, 2, 3, 4). Based on the cited recommendations, the length magnification was set to a constant ratio of (l/w= 3) the crest shape was to be of a semi-circular form with simple radius (r= 15 mm) and the spillway walls were vertical with the thickness of T= 2r. An intensive experiment was carried out over a wide range of flows, providing 720 flow data ranging from free flow to submerged flow conditions. 1D flow equation was presented using combined mathematical and dimensional analysis. A coefficient of discharge, Cd, was introduced to represent the influence of the effective geometric and hydraulic parameters on the flow capacity over the spillway. Modular limit was also controlled to see whether the flow over the spillway would be submerged. The results of the study indicate that the modified curved planform of the spillway apexes with consistent divergence in the downstream channel introduces a significant improvement in the flow efficiency over the labyrinth spillways. Spillways with narrower curved apexes (i.e. R/w≤ 0.2), and with the vertical-aspect ratio of (2≤w/P<3) provide more stable and higher hydraulic performance than any other labyrinth planforms over a wide range of flows (i.e. 0.10/P<0.6). In terms of the flow capacity, the proposed spillway model is shown to be more efficient than other zig-zag planforms (i.e. triangular and trapezoidal shapes) with an identical crest length.


S. A. Banishoaib, A. Bordbar, A. A. Kamanbedast, A. Masjedi, M. Heidarnejad,
Volume 23, Issue 4 (2-2020)
Abstract

A ‘spillway’ is a structure used to provide the controlled release of flood water from upstream into downstream area of a dam. As an important component of every dam, a spillway should be constructed strongly, reliably and efficiently to be used at any moment. Labyrinth and stepped spillways are presented as appropriate modifications to those spillways hardly capable of managing the maximum potential discharge. Owing to their nonlinear crests for a given width, labyrinth and stepped spillways have a larger discharge rate than linear- crest spillways at an identical height. Compared to other energy dissipaters, the combination of stepped and labyrinth spillways is known as a very strong energy dissipater. In the following part, the combination of these two structures and their dimensional change for increasing the water- energy dissipation are addressed. To conduct this study, an experimental flume with a 90- degree bend in the Islamic Azad University of Ahwaz was used. In total, 90 experiments were conducted on three different labyrinth- shape stepped spillway models with two different lengths, three different widths, and five different discharges. Analysis of the results showed a greater energy loss reduction in triangular rather than rectangular or trapezoidal labyrinth- shape stepped spillways. In addition, energy loss was greater in labyrinth spillways with two cycles than those with one cycle. Energy loss was increased by raising the Froude number from 0.05 to 0.1; in contrast, energy loss was decreased with increasing the Froude number from 0.1 to 1.0, which was due to the submergence of steps, a decrease in the roughness of steps and an increase in the intensity of aeration.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb