Search published articles


Showing 6 results for Land Surface Temperature

A. Rahimi Khoob, S.m.r Behbahani , M.h. Nazarifar,
Volume 11, Issue 42 (1-2008)
Abstract

  Air temperature prediction models using satellite data are based on two variables of land surface temperature and vegetation cover index. These variables are obtained by atmospheric corrections in the values for the above data. Water vapor, ozone, and atmospheric aerosol optical depth are required for the atmospheric correction of visible bands. However, no measurements are available for these parameters in most locations of Iran. Using the common methods, land surface temperature can be measured accurately at 2 ° C. Given these limitations, efforts are made in this study to evaluate the accuracy of predicting maximum air temperature when uncorrected atmospheric data from the NOAA Satellite are used by a neural network. For this purpose, various neural network models were constructed from different combinations of data from 4 bands of NOAA satellite and 3 different geographical variables as inputs to the model in order to select the best model. The results showed that the best neural network was the one consisting of 6 neurons as the input layer (including 4 bands of NOAA satellite, day of the year, and altitude) and 19 neurons in the hidden layer. In this structure, about 91.4% of the results were found to be accurate at 3 ° C and the statistical criteria of R2, RMSE, and MBE were found to be 0.62, 1.7 ° C, and -0.01 ° C, respectively.


L. Parviz , M. Kholghi, Kh. Valizadeh,
Volume 15, Issue 56 (7-2011)
Abstract

The determination of air temperature is important in the energy balance calculation, hydrology and meteorological studies. In this regard, the limited number of meteorological stations is one of the serious problems for air temperature determination on a large spatial scale. The remote sensing technique by covering large areas and using updated satellite images might be appropriate for estimation of this parameter. In this research, the negative correlation between land surface temperature and vegetation index (NDVI) has been used for air temperature estimation through TVX method in which the inference of air temperature is based on the hypothesis that the temperature of the dense vegetation canopy is close to air temperature. For investigation the performance of TVX method, images of MODIS sensor have been applied for the Sefidrod River basin in the years 1381- 1382-1384. The spilt window technique which was developed by Price has been used for land surface temperature calculation. The mean difference between observed and estimated land surface temperature using Price algorithm was about 6.2Co. This error can affect the air temperature values. Because of using NDVI index in TVX method, this method has the sensitivity to the vegetation density, though in the parts with sparse vegetation, the value of error increases. 4 percent variation of air temperature against the 0.05 increasing of maximum NDVI indicates the high performance of TVX method for air temperature estimation in large areas.
M. A. Moradi, A. Rahimikhoob,
Volume 16, Issue 62 (3-2013)
Abstract

Reference evapotranspiration (ET0) is a necessary parameter for calculating crop water requirements and irrigation scheduling. In this study, a method was presented as ET0 is estimated with NOAA satellite imagery in the irrigation network. In this method, a pixel from a set of pixels within the irrigation network was chosen with the highest vegetation index, and its surface temperature (Ts) with extraterrestrial radiation parameter (Ra) was used as inputs of the model. The M5 model tree for converting Ta and Ra to ET0 was used as input variables. In this research, Gazvin irrigated area was selected as a case study. A total of 231 images of NOAA satellite related to irrigation season of the study area were used. The results obtained by the M5 model were compared with the Penman–Monteith results, and error values were found within acceptable limits. The coefficient of determination (R2), percentage root mean square error (PRMSE) and the percentage mean bias error (PMBE) were found to be 0.81, 8.5% and 2.5%, respectively, for the testing data set.
M. Madanian, A. R. Soffianian, S. Soltani Koupai, S. Pourmanafi, M. Momeni,
Volume 23, Issue 4 (2-2020)
Abstract

Land surface temperature (LST) is used as one of the key sources to study land surface processes such as evapotranspiration, development of indexes, air temperature modeling and climate change. Remote sensing data offer the possibility of estimating LST all over the world with high temporal and spatial resolution. Landsat-8, which has two thermal infrared channels, provides an opportunity for the retrieval of LST using the split- window method. The main objective of this research was to analyze the LST of land use/land cover types of the central part of Isfahan Province using the split- window algorithm. The obtained results demonstrated that the "other" class which had been mainly covered with bare lands exhibited the highest LST (50.9°C). Impervious surfaces including residential areas, roads and industries had the LST of 45°C. The lowest temperature was observed in the "water" class, which was followed by vegetation. Vegetation recorded a mean LST of 42.3°C. R2 was 0.63 when regression was carried out on LST and air temperature.
 


M. Kaffash, H. Sanaei Nejad,
Volume 25, Issue 2 (9-2021)
Abstract

Land Surface Temperature (LST) is an important parameter in weather and climate systems. Satellite remote sensing is a unique way to estimate this important parameter. However, satellite products have either low spatial resolution or low temporal resolution that limits their potential use in various studies. In recent years, the use of Spatio-temporal fusion techniques to produce high resolution simultaneous spatial and temporal images has been extensively investigated. In this study, a Flexible Spatio-temporal Data Fusion (FSDAF) was used to produce Landsat-like LST images with Landsat spatial resolution and MODIS temporal resolution. The quantitative and qualitative validation of the images was performed by comparing them with the Actual Landsat LST images. The results showed that the FSDAF algorithm has high accuracy in estimating daily LST data both qualitatively and quantitatively. The RMSE and MAE parameters of the images produced compared to the actual Landsat images were 1.18 to 1.71 and 0.88 to 1.29°C, respectively. The correlation coefficient above 0.87 and bias between -0.6 to 1.45°C also confirms the high accuracy of the algorithm in estimating Landsat-like land surface temperature on a daily time scale.

R. Jafari, H. Sanati,
Volume 25, Issue 3 (12-2021)
Abstract

The southern regions of Kerman Province have repeatedly encountered dust storms. Therefore, the objective of this study was to identify dust sources using effective parameters such as vegetation cover, land surface temperature, soil moisture, soil texture, and slope as well as to detect dust storms originating from these regions based on 31 MODIS images in 2016 and SRTM data. After normalizing parameters, the dust source map was prepared by fuzzy logic and assessed with an error matrix and available dust source map. Results showed that 30.5% of the study area was classified as a low source of dust, 39.55% as moderate, and 29.85% as severe-very severe. The overall accuracy of the produced map was about 70% and the producer and user accuracy of the severe-very severe class was more than 87%. The detection of dust storms originated from the identified dust sources also confirmed a crisis situation in the region. Due to the repeatability and continuity of obtained dust source map at pixel scale, it can be used to update available dust source maps and manage dust crisis in the region, properly.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb