Showing 6 results for Lateral
R. Shahmohammadi, S. M. Mirlatifi, K. Mohammadi,
Volume 11, Issue 40 (7-2007)
Abstract
A computer model (SprinklerMod) was developed to simulate hydraulics of sprinkler irrigation systems. The objective of this paper is to describe mathematical background of this model for simulating pressures and discharges of sprinklers along the laterals. The model is capable of designing two types of laterals: laterals with fixed sprinklers and laterals with portable sprinklers. The model shows the simulation results in the forms of tables and graphs. Laterals with one or two diameters on uniform or non-uniform slopes can be designed. The model provides graphical presentation of percentage of sprinkler pressure variations for different lateral inside diameters. The Hazen- Williams equation was used for the calculation of friction losses. The required input parameters for lateral simulation are lateral type, desired sprinkler operating discharge and pressure head, spacing between sprinklers, distance of first sprinkler from lateral inlet, number of sprinklers operating on the lateral, riser height, Hazen- Williams pipe friction coefficient and lateral longitudinal slope or field elevations at each of the sprinklers on the lateral. Laterals are simulated such that average sprinkler pressures and discharges become equal to the values requested by the designer. Iterative procedures were implemented to simulate sprinkler pressures and discharges on laterals and the Newton- Raphson iterative method was used for calculating pressure of each of the sprinklers on the laterals with portable sprinklers. In order to evaluate the model, some example results of the model were compared with classical design results. Since there is no formula for the calculation of the required lateral inlet pressure in classical design of laterals with portable sprinklers in the scientific references, a new formula was developed. Averages of absolute percentage of variations of lateral inlet pressures for laterals with fixed sprinklers and with one or two-size diameters ranged from 0.3 to 0.7 percent, respectively. This value for laterals with portable sprinklers was 0.1 percent.
M. Karami Moghaddam, M. Shafai Bajestan, H. Sedghi,
Volume 15, Issue 57 (10-2011)
Abstract
In diversion flows, a portion of stream flow which enters the intake is diverted from upstream of the intake denoted by a surface and is called dividing stream surface (DSS). The amount of flow and sediment discharge entering the intake as well as design of submerged vanes to control sediment depends on determination of dividing stream width. In this study, the experimental tests were carried out at a 30 degree water intake from a trapezoidal section. Three components of velocity data were obtained for different flow conditions. Then numerical SSIIM2 model was calibrated and verified using tests data. More flow conditions such as the main channel with rectangular section were run using SSIIM2 model to get enough hydraulic data. From analysis of these datas it was found that the dividing stream width in different distances from the bed depends directly upon the diversion flow ratio. It was found that in comparison to the rectangular section, in trapezoidal cross section, the DSS dimensions are modified in such a way that its width is increases at the surface and reduced at the bed for the same flow conditions. Relations for predicting the dividing stream width and diversion flow ratio have been presented in this paper for intake from both rectangular and trapezoidal cross sections.
S. H. Sadeghi, M. Gheysari, M. Kavyani,
Volume 16, Issue 59 (4-2012)
Abstract
To maintain a high system-uniformity and also acceptable water use efficiency in a solid-set sprinkler irrigation system, the total committed pressure variation to subunits should not exceed 20% of the pressure head of the sprinkler which operates with the average pressure. Although some references often recommend giving the major part of this pressure variation to laterals, a scientific and precise criterion that allows designers to minimize the costs has not yet been developed. In this study, regarding the usual design criteria of this system in Iran and also respecting hydraulic rules, an economical analysis was conducted in order to optimize the system based on the appropriated permitted pressure head loss to each subunit. Then, the system irrigates the possible largest area by using minimum weight of pipe. The methodology consisted of 13 slope treatments for each subunit (0, ±0.1, ±0.5, ±1, ±2.5, ±5 and ±10%) and also the ratio of appropriated allowable head loss to the manifold (2.5, 5, 7.5, 10, 12.5, 15 and 17.5%). A simple software was developed to determine the size and the length of the manifold and laterals for each combination as well as their total weight and total irrigated area. Several criteria such as maximum and minimum velocity of water in the pipe, maximum head loss which occurs in 100 m of the manifold, maximum permitted head loss for each subunit and also maximum length of the laterals were considered here in order to derive practical design combinations. Because a constant inlet pressure for each subunit leads to a constant cost of energy, then the ratio of total weight of pipelines to the total irrigated area (Wtot /A0) was chosen as the standard, which helps to distinguish the best appropriation of allowable head loss to the manifold or laterals. Graphical diagrams were presented to help designers to know how to distribute the total permitted head loss between manifold and laterals. In general, results showed that total pressure head variation of each subunit greatly affects the system costs and also the total optimized appropriated pressure head loss to each subunit is greatly dependent on its own slope.
S. H. Sadeghi, S. F. Mousavi, M. Heidarpour,
Volume 16, Issue 60 (7-2012)
Abstract
Precise calculation of inlet pressure into sprinkler laterals is an important problem for proper distribution of uniformity. The adjusted average friction correction factor, FaAVG , provides the possibility of calculating the inlet pressure to mutli-outlet pressurized irrigation pipelines when the first outlet spacing from the pipe entrance is arbitrary. To investigate the effect of allowable head-loss in the lateral pipeline on inlet pressure, a new equation was developed for calculating this factor. A progression coefficient was assumed for variable discharge of the outlets. The results showed that though the inlet pressure of the lateral depends on the head loss between the outlets, it is negligible when more than 15 outlets are used. It was also concluded that when N is less than 15 and the ratio of distance between inlet and first outlet to outlet spacing is less than 1, the conventional approaches overestimate the inlet pressure. In this research, a new equation was also developed for Christiansen friction factor in which the first outlet is located at a fraction of outlet spacing. This new factor is dependent on the head loss between the first and last outlets, in addition to the number of outlets and the power of velocity equation. The results of applying this new factor showed good correlation with other researchers’ numerical results when a large number of outlets are coalesced.
M. Halvaeifard, A. Masjedi,
Volume 20, Issue 78 (1-2017)
Abstract
One of the methods for sediment control in lateral intake can be application of submerged vanes in front of the inlet. The establishment of submerged vanes in flow path causes a flow diversion toward the inner arc. In this research, the performance of submerged vanes on sediment transport to the inlet at 180 degree of intake has been investigated. Several experiments were carried out in a laboratory channel made of Plexiglas at a 180-degree arc, under clear water condition. In this research a series of experiments were done by inserting several vanes made of Plexiglas in front of lateral intake. Experiments were done by using two rows of parallel vanes with variable angles at four different discharges under two conditions of with and without vanes. In each experiment, the main channel discharge and diversion channel discharge, sediment discharge through the diversion and transmission were measured. The results of research showed that the performance of the parallel submerged vanes in diverting the path of sediments depends on contacted vanes angle by water flow. Also, entering water rate is directly proportional with entering sediment rate and entering sediment rate are increased with the increase of entering water rate at all angles. Suitable performance in reducing the sediment transport to the inlet was observed at an angle of 15 degrees of vanes relative to the axis of water flow. In other words, by increasing the angle relative to the axis of flow, sediment transport to the inlet will be increased.
A.m. Kiyani, M. Zeinivand, J. Ahadiyan, I. Falorca,
Volume 28, Issue 2 (8-2024)
Abstract
The design of retaining walls depends on the amount of driving pressure from the backfill of the wall. Therefore, estimating this pressure is an essential factor in its design. In this research, the changes in the slope of failure, the place of the failure wedge, and the reduction of the failure line along the length and depth of the embankment were investigated on the retaining wall embankment reinforced with geotextile during ten tests in a laboratory study. The parameters under investigation in this article are the number of layers and the distances between the geotextile layers. The results showed that the presence of geotextile layers reduced the length of the fracture line up to 41%. It has also improved the value of the fracture angle and reduced the formation of the rupture wedge in the lower depths up to a maximum of 16%. The translational movement of the wall in the actuation state has a greater distinction between the fixed point and the failure zone, and the reinforcing layers are also effective in increasing the bearing capacity and stability of the retaining wall.