Showing 4 results for Lead.
M. Amini, M. Afyuni, H. Khademi,
Volume 10, Issue 4 (1-2007)
Abstract
Heavy metals including cadmium (Cd) and lead (Pb) are entering agricultural soils from different routes and mainly due to human activities. Accumulated Cd and Pb in the soil would eventually enter the human and animal food chains and pose threat to their health. Therefore, evaluating heavy metal accumulation is necessary to prevent soil and environmental pollutions and should be considered by researchers as well as policy makers. This study was conducted to model the accumulation rates of Cd and Pb in the agro-ecosystems of Isfahan, Mobarakeh, Lenjan, Borkhar, Najafabad, Khomeinishahr and Felavarjan. Cadmium and lead accumulation rates in the agro-ecosystems were computed using a stochastic mass balance model which uses Latin Hypercube sampling in combination with Monte-Carlo simulation procedure. Agricultural information including crop types, crop area and yield, the type and the number of livestock, application rate of mineral fertilizers, compost and sewage sludge and also metal concentration in plant and amendments were used to quantify Cd and Pb accumulation rates. Modeling Cd and Pb accumulation rates indicated that the metals are accumulating in the agricultural lands in the studied townships. The largest Cd (18 g ha-1 yr-1) and Pb (260 g ha-1 yr-1) accumulation rates were found in the township of Isfahan but the minimum accumulation rates were found in township of Lenjan for Cd (3 g ha-1 yr-1) and Mobarakeh for Pb (10 g ha-1 yr-1). The major input route to agricultural soils is phosphate fertilizers for Cd but for Pb is manure on the regional scale. High application rates of sewage sludge and compost in agricultural lands in the township of Isfahan could result in considerable amounts of Cd and Pb entering the soils of this region.
E Fatahi Kiasari , A Fotovvat, A.r Astaraei , Gh Haghnia ,
Volume 14, Issue 51 (4-2010)
Abstract
The contamination of soils with lead is a major environmental problem throughout the world. Phytoextraction of heavy metals from contaminated soils has the prospect of being a more economic in situ alternative. Chemically enhanced phytoextraction has been proposed as an effective approach to remove heavy metals from contaminated soil through the use of high biomass plants. Using a pot experiment, the effects of the application of three rates of EDTA at 0, 1.5 and 3 mmol/kg soil and sulfuric acid at 0, 0.5 and 1 mmol/kg soil with two rates of Pb at 0 and 200 mmol.kg-1 on the uptake of Pb by corn (Zea mays L. single cross 704 var.), sunflower (Helianthus annuus L. ajili var.), and cotton (Gossypium hirsutum L. varamin var.) plants were studied. The results showed that EDTA was more effective than sulfuric acid in increasing the concentration of Pb in shoots and roots for all plants studied. The maximum amount with application of EDTA to soil for shoots of corn, sunflower, and cotton were 4.07, 6.49 and 31.33 times higher than the control, respectively. EDTA also enhanced Pb content of roots of corn, sunflower, and cotton 3.38, 1.63 and 1.09 times higher than the control, respectively. DTPA-Pb was higher in soil treated with EDTA than sulfuric acid. The application of EDTA also significantly increased shoot-to-root ratio of Pb in plants examined. The results of this study showed that corn was able to phytoextract more Pb than sunflower and cotton.
M. Rahmanian, H. Khodaverdiloo, M. H. Rasouli Sadaghiani, Y. Rezaie. Danesh, M. Barin,
Volume 15, Issue 58 (3-2012)
Abstract
Arbuscular mycorrhizae (AM) and Plant Growth Promoting Rhizobacteria (PGPR) associations are integral and functioning parts of plant roots. These associations have a basic role in root uptake efficiency as well as improvement of plant growth in degraded environments including heavy metals contaminated soils. This study was conducted to evaluate the effects of heavy metal-resistant soil microbe's inoculation on bio-availability of Pb and Cd in soil, plant growth as well as metal uptake by Millet (Pennisetum glaucum), Couch grass (Triticum repens) and wild alfalfa (Medicago sativa). A soil sample was treated by different levels of Pb and Cd (soil 1). Native microbial inoculums were obtained from alfalfa rhizosphere soils adjacent to Pb and Cd mines in Zanjan region (soil 2), then added with weight ratio of 1:5 (w/w) to soil 1. Host plants including millet, couch grass, and alfalfa were grown in pots and kept in greenhouse conditions. At the end of growing period, shoot dry matter and Pb and Cd concentrations in plant and soil were measured. Results indicated that plants yield and Pb uptake were significantly higher in non-inoculated treatments (p ≤ 0.05). However, Cd uptake by plants was greater in inoculated treatments (p ≤ 0.05). Couch grass showed the most accumulation potential of Cd and Pb among the studied plants.
M. Amouzegar, A. Abbaspour, Sh. Shahsavani, H. R. Asghari , M. Parsaeiyan,
Volume 19, Issue 74 (1-2016)
Abstract
Soil contamination by Pb leads to a reduction in the quality and quantity of crop yield, because it is highly toxic in soluble ionic forms. The availability of this element for plant roots can reduce by the formation of compounds with low solubility and their sedimentation by phosphorous amendments.. Root symbiosis with mycorrhizal fungi can also increase plant resistance against heavy metals. This study was carried out as a factorial experiment in a randomized complete block design asa greenhouse experiment on sunflower plant at Shahrood University. Treatments included mycorrhizal fungi with two levels of inoculation, (with and without inoculation), organic and inorganic phosphorous fertilizers such as humic acid, diammonium phosphate, bone meal and bone meal+humic acid. The results showed that inoculation with mycorrhizal fungi resulted in a significant increase (P&ge0.05) in percentage of mycorrhizal colonization and an increase in soil EC,shootdry weight and phosphous uptake by the plant. Phosphorus fertilizers significantly increased the available phosphorus in soil, dry weight and uptake of phosphorus by the shoots. The interaction effects of mycorrhiza and phosphorus fertilizers on soil exchange able Pbwere significant. The application of diammonium phosphate and mycorrhiza had the greatest impacton the reduction of Pb (by 25.48percent) in the soil exchange. Mycorrhizal plants had a lower rate of lead concentrations in shoots, which was equal to 78/14%, and also the application of phosphorus fertilizers significantly reduced Pb in plant shoots.