Search published articles


Showing 31 results for Loss

A.a. Seraj,
Volume 5, Issue 2 (7-2001)
Abstract

Field studies of S. cretica Led. damage and potential crop losses on two important cultivars of sugarcane, NCo 310 and CP 57-614, were carried out in southern Khuzestan in 1998-1999.

 CP 57-614 showed greater mean percentage of bored nodes and internodes (20.7%) than NCo 310 (11-2%). Apart from the direct losses in cane weight (cane yield) due to boring from the larvae, cane juice quality is also adversely affected, resulting in lower recovery of sucrose in the factory. Sugar per ton of stalks also was greater in NCo 310 (132 kg) than in CP 57-614 (110 kg). Estimated sugar losses were 0.11 tons ha-1 for every 1% bored and rotten stalks. Other indirect losses are also discussed.


S. Kouchakzadeh,
Volume 6, Issue 3 (10-2002)
Abstract

Side channel spillways have a common usage in conveyance and distribution networks, high dams, water and wastewater treatment plants, and surface drainage networks. A side channel carries spatially varied flow with increasing discharge and their water surface profiles is a main feature in the design process. Usually, the bottom width of the channel is flared in the flow direction and an end sill is also installed at the downstream end to provide a control section and to generate an even water surface profile. In this study, the impact of installing an end sill on the flow characteristics in a non-prismatic side channel is presented. Six distinct longitudinal profiles were clearly observed in each run and the difference between the mid points of the maximum and the minimum profiles of each run was used to evaluate the sill effects on the water surface profile and the energy dissipation. The results indicated that the maximum and the minimum differences are, respectively, equal to critical depth and half of it generated at the channel downstream end. Also, based on an envelope of the data, a method was proposed to determine the maximum potential impact of an end sill that might have on the flow depth, which could also be considered as a guideline in the design process.
A. Kashi, S. Hosseinzadeh, M. Babalar, H. Lessani,
Volume 7, Issue 4 (1-2004)
Abstract

Watermelon (Citrullus Lanatus) cv. Charleston Gray is one of the most important cultivars grown in Iran. It has some good quantitative and qualitative characteristics but unfortunately is sensitive to Blossom End rot. To solve this problem, this experiment was conducted in a factorial manner in randomized complete block design with four replications in Research Station and Laboratories of Department of Horticulture, College of Agriculture, the University of Tehran, during 1997 & 1998. In this experiment, black polyethylene mulch was used and calcium nitrate was foliar sprayed at concentrations of 0, 4, and 6 g/L. Results indicated that mulch could increase yield by 85% over two years due to weed growth suppression and conserving soil moisture for a longer time. Foliage fresh weight, number and average weight of fruits per plant and precocity were also significantly affected by black polyethylene mulch. Furthermore, mulch reduced the number and weight of fruits affected by Blossom End rot by about 13% and 12.5% (average of two years), respectively. Calcium nitrate addition during both years had no significant effect on the measured fruit characteristics nor on Blossom End rot.
H. R. Salemi, A. R. Sepaskhah,
Volume 10, Issue 1 (4-2006)
Abstract

Estimation of seepage is essential prior to lining of earth canals. In Iran such investigation has been achieved in some irrigation networks using empirical relationships derived in other countries. Estimation of water loss in canal is required in design, operation and management of water distribution systems. Water seepage may be determind by using empirical equations proposed by F.A.O. These equations are applicable for different soils and hydraulic parameters. However, the appropriate estimating equation should be determined for each region. Therefore, these equations should be calibrated for local usage and different canal vegetation conditions. In this investigation water losses in canals at the Rudast region of Isfahan were measured by inflow and outflow procedure. Different canals reaches were selected in soils of relatively heavy, medium and light textures. The density of vegetation population in canals were low, medium and high. The estimated seepage losses by different empirical equations were not corresponded to those of measured values. Therefore, by using the measured seepage at different soil textures and vegetation densities the empirical coefficients of six empirical equations of F.A.O. (Ingham, Davis and Wilson, Affengendon, Moritz, Molesworth and Yennidumia, Misra) were modified for the study region. The relationships between measured seepage and estimated seepage before and after modification of the empirical equations were determined by regression analysis. These equations estimated the seepage loss much smaller than the measured values. The regression parameters (selope, intercept, and coefficient of determination of regression equation) indicated that after modification, the Ingham and moritz equation with higher slopes (0.91, 1.01), lower intercepts (-0.096, -0.039) and higher coefficient of determination (0.96) estimated the closest seepage values to the measured values respectively. The misra equation was the next best equation for seepage estimation. The results of present investigation indicated that the modified Ingham and Moritz equations were the most appropriate ones for estimation of seepage losses at different soil textures and vegetation densities in the study region.
M. Yousefifard, A. Jalalian, H. Khademi,
Volume 11, Issue 40 (7-2007)
Abstract

Improper use of natural resources, especially soil, causes its degradation and severe soil erosion. Water erosion is an important factor causing soil degradation. Land use change of pasture would result in severe soil erosion mainly due to the reduction of vegetation cover and also surface soil disturbance. The objectives of this study were to estimate the amount of sediment, runoff and nutrient loss in four different land uses including a pasture with good vegetation cover (> 20%), a pasture with poor vegetation cover (< 10%), a currently being used dryland farm and a degraded dryland farm which is not used. Soil samples were taken from the depth of 0–10 cm in a completely randomized design with four replications. A rainfall simulator was run for two hours to estimate the amount of sediment, runoff and nutrient loss. Organic matter, total N, available P and distribution of particles size in soil and sediment were measured. The results showed that a very high degradation has occurred in the area mostly due to water erosion created as a result of overgrazing in pasture, susceptibility of geological formations and more importantly, the change of land use pasture to inefficient dryland farming. Maximum and minimum runoff was observed in the abandoned dry landfarm and pasture with good vegetation cover, respectively. Maximum sediment content was observed in dryland farm. Sediment content in dryland farm, abandoned dry landfarm and pasture with poor vegetation cover were 54.5, 21 and 10.4 times more than that in the pasture with good vegetation cover, respectively. Enrichment ratio (ER) of soil particles in sediment was highest for fine silt (2-5µm), followed by clay. A minimum of ER was obtained for sand fraction. Percentages of organic matter, total N and available P in sediment were higher in the first hour as compared to the second one. This is mainly due to the fact that fine particles are removed at the beginnings of the rainfall event. Total removal of these chemical factors was highest in dryland, intermediate in pasture with poor vegetation cover and abandoned dryland and lowest in pasture with good vegetation cover. In general, cultivation and disturbance of the pasture in the area land have caused a great decrease in soil quality and made the surface very sensitive to erosion.
A. Jalalian, M. Amirpour Robat, B. Ghorbani, S.h. Ayoubi,
Volume 11, Issue 42 (1-2008)
Abstract

  Soil erosion is one of the most threatening issues for crop production and environmental qualities, especially for soil and water resources. Appropriate knowledge about total soil loss and runoff is valuable in order to perform soil and water conservation practices in watersheds. EUROSEM, "a single event, dynamic and distributed model," was developed to simulate soil loss, sediment transportation and deposition by rill and interrill processes. This study was conducted to evaluate EUROSEM model in order to simulate soil loss and runoff in Sulijan sub-basin, which covered 20 ha, from Charmah-Bakhtari province. The sub-basin was divided in to 19 homogeneous elements using topographic, land use, plant cover, slope and channel properties throughout it. Soil, plant cover, land surface and climate characteristics were measured and evaluated by field observations and laboratory measurements. Actual soil loss and runoff for studied events were determined by direct measurement in the field. After sensitivity analysis, calibration and validation steps were carried out to simulate runoff and soil loss. The results of sensitivity analysis showed that the EUROSEM model for predicting runoff was more sensitive to hydraulic conductivity, capillary drive and initial soil moisture. On the other hand the model for predicting soil loss was more sensitive to Manning's coefficient and soil cohesion. The results showed that the EUROSEM model was able to simulate well the total runoff, peak of runoff discharge, total soil loss and time for the peak of soil loss discharge. But that could not simulate well the peak of soil loss discharge and time for the peak of runoff. Although it seems that EUROSEM is able to predict soil loss and runoff partially well in individual events, it is necessary to evaluate the efficiency of the models for different basins with varieties of soil, plant cover and climatic properties.


E. Askari Asli Ardeh, S. Sabori, M. R. Alizadeh,
Volume 12, Issue 44 (7-2008)
Abstract

A considerable portion of threshing losses and waste of rice takes place in threshing stage. One of the effective factors in threshing losses and waste of threshing units, threshers and harvesting machines, is the drum speed. In this research, effects of three factors including drum speed (five levels), crop moisture content (two levels) and rice common varieties (four varieties) on threshing losses and waste were studied. The thresher T25 was used for the investigation. It has wire loop type tooth. Dependent factors included unthreshed grains percentage (threshing losses) and damaged grains percentage. The obtained data was analyzed by split–split plot test based on Complete Randomized Blocks Design. The mean values were compared using Duncan’s Multiple Range Test. The tests results revealed that significant effect of variety type and drum linear speed on threshing losses (P<0.01). Furthermore, the effects of variety type, moisture content and drum speed on damaged grains were also significant. The optimum drum speed was 14 m/s. The most and the least of threshing losses belong to Hashemy and Binam varieties, respectively. Among the tested varieties, Binam variety showed the highest percentage of the damaged grains. In general, decreasing the crop moisture resulted in increasing the mean damaged grain.
M. Ghasemi Varnamkhasti, H. Mobli, A. Jafari, M. Heidari Soltanabadi, Sh. Rafiee,
Volume 12, Issue 44 (7-2008)
Abstract

Rice whitening is an important stage in rice milling process and improvement of the whitener machines has a remarkable effect on rice loss. To decrease the amounts of broken rice and losses, the rotor of the blade whitener was equipped with screw conveyor. To investigate the effects of rotor speed (in four levels: 600, 700, 800 and 900 rpm) and output rate (in three levels: 400, 500 and 600 kg/h) on quality of milled rice, a factorial design with randomized complete block experiments with three replications were conducted. In this study, Sorkheh variety (a medium rice variety), which is one of the prevailing varieties in Esfahan, was used. The results showed that the lowest breakage percentage (20.92%) occurred at rotor speed of 700 rpm with an output rate of 600 kg/h and the best degree of milling (6.33%) took place at rotor speed of 600 rpm with an output rate of 400 kg/h. The best rice quality (low broken rice and high degree of milling) was observed at rotor speed of 600 rpm with 500 kg/h output rate.
M Momeni, M Kalbasi, A Jalalian, H Khademi,
Volume 12, Issue 46 (1-2009)
Abstract

The forms and dynamics of soil phosphorus can be greatly affected by land use changes, which often involve changes in vegetation cover, biomass production and nutrient cycling in the ecosystem. Present research evaluates the impact of land use change on the amount of total organic and inorganic P, labile, moderately labile and nonlabile P pools in semiarid soils of central Zagros. Samples were collected from surface soils (0-10 cm) of i) of moderately degraded pasture (20-25% plant cover), ii) highly degraded pasture (5-10 % plant cover), and iii) cultivated field (10 years) in Soolegan sub watershed and i) moderately degraded pasture (25-30 % plant cover) and ii) highly degraded pasture (5-10 % plant cover) in Sadat Abad sub-watershed. Significantly (P<0.05) low amounts of total organic P were found following cultivation (23.9%) and overgrazing (18.2 and 40.8 %) in Soolegan and Sadat Abad, respectively. The largest depletion of labile organic P (NaHCO3-Po) (72.3%) and moderately labile organic P (H2SO4-Po plus NaOH-Pi) (24.3%) were observed in cultivated rainfed land in Soolegan. Overgrazing led to decrease in labile organic P (42.1 and 64.4%), moderately labile organic P (13.9 and 35.7%) and nonlabile organic P (NaOH-Po) including moderately resistant and resistant organic P (12.9 and 44.4%) in Soolegan and Sadat Abad, respectively. Our results showed that degradation of natural plant cover cause to depletion in the soil P pools. Decreasing the amounts of moderately resistant and resistant P pools led to a decline in soil productivity and fertility.
H Morteza Por , M.h Raoufat , S Kamgar ,
Volume 13, Issue 47 (4-2009)
Abstract

Oil seed rape is an important non-cereal crop used mainly for edible oil production. Canola pods are fragile and its branches are twisted together at harvesting time. Harvesting with a conventional combine can pull off twisted branches and cause appreciable losses in the vicinity of divider at combine header. In this study, a hydraulic rotary divider was designed and developed to separate twisted pods and reduce the grain loss. The device is made up of two cylinders and a number of fingers, the cylinders rotate in opposite direction and fingers move in and out through holes on cylinder walls. The assembly was expected to separate the twisted pods and reduce grain loss. A hydraulic motor driven by combine hydraulic system was used to rotate the separating cylinders. The separating assembly was installed on righthand side of the combine harvester header. A split-plot experiment was used to evaluate the performance of the unit. Field tests were carried out at combine forward speed of 1.5 kmh-1. Variables were: cylinders rotary speed in three levels (50, 75 and 100 rpm), the number of fingers in three levels (16, 12 and 8), and the tests were conducted with and without combine reel. Two different positions of finger protrusion were also considered in field tests. The results were compared with those of a conventional combine header. The results show that the medium rotational speed (75 rpm) exhibited lowest seed loss. Furthermore, as the number of fingers increased, the seed loss tended to decrease. The seed loss also decreased in the presence of combine reel. Also, findings showed there is no significant difference between the two protrusions trajectories of fingers. A twenty percent decrease in seed loss was observed at rotary speed of 75 rpm and number of fingers of 16 in the presence of combine reel.
S Jamali, E Pourjam, N Safaee, A Alizadeh,
Volume 13, Issue 47 (4-2009)
Abstract

In order to estimate the loss of rice caused by white tip nematode, (Aphelenchoides besseyi), to Alikazemi cv., two series of experiments were conducted in greenhouse and microplot conditions at Rice Research Institute, Rasht (Guilan province) during 2005-2006. The microplots sizes were 0.5×2 meter. Rice seedlings were inoculated by plastic tube method with 0, 100, 300, 500, 700 and 900 nematodes per plant. The experiments were arranged in greenhouse and microplot conditions as a completely randomized design and completely randomized block design with four replications, respectively. The factors under investigation consisted of symptoms (number of plants and Leaves infected), yield and population density of nematodes. The variance analysis of data showed significant differences among treatments in all parameters. The minimum infestation level leading to symptoms and yield loss in microplot condition (500 nematodes) was greater than greenhouse (300 nematodes). Regression analysis of data revealed that the yield reduction was mainly explained by population of nematodes in greenhouse and microplot (R2= 92.56, R2 = 91.55). Also, there was a positive correlation at 5% level of probability between disease incidence and nematode population (R2= 84.42, R2 = 75.27). The resulting equations from regression can be used to estimate crop loss from population of nematodes.
O Hashemi Beni, M.h Salehi, H Beigi Harchegani,
Volume 13, Issue 50 (1-2010)
Abstract

Although soil organic matter (SOM) constitutes a small portion of soil bulk weight, it has a tremendous effect on physico-chemical and biological properties of soils. It is also one of the most important indicators of soil quality and its production. Soil organic matter determination is required for soil fertility management and soil pollution purposes. Wet oxidation procedure of Walkley-Black is a routine, relatively accurate and popular method for the determination of soil organic matter, but it involves the use of chromate and high cost of analysis. Therefore, loss-on-ignition (LOI) procedure as a simple and cheap method of SOM estimation which also avoids chromic acid waste has got more attention. The aims of this study were (i) to establish the relationships between LOI method and SOM as determined by Walkley-Black method for four major plains of Chaharmahal-va-Bakhtiari province and (ii) to determine the optimal temperature of the LOI. To do this, 205 soil surface samples were randomly collected from 0-25 cm depth of Shahrekord, Farsan, Kohrang and Lordegan plains to determine soil organic matter by Walkley-Black method and LOI procedure at 300, 360, 400, 500 and 550 oC for two hours. To determine the optimum temperature for ignition, 40 soil samples were selected to compare the SOM and CCE before and after ignition for each temperature. Results showed a positive, linear significant relationship existed between LOI and wet oxidation in each plain. Coefficient of determination (R2) of the equations was higher for individual plain than the overall equation. Coefficient of determination and line slope decreased and error (RMSE) increased with increasing ignition temperature. At higher contents of calcium carbonate, the rate of line slope decrease with increasing ignition temperature was more noticeable. This may be due to the destruction of carbonates at higher temperature. A temperature of around 360 oC was identified as optimum as it burned most organic carbon, destroyed less inorganic carbon, caused less clay structural water loss and used less electrical energy.
S. H. Sadeghi, M. Gheysari, M. Kavyani,
Volume 16, Issue 59 (4-2012)
Abstract

To maintain a high system-uniformity and also acceptable water use efficiency in a solid-set sprinkler irrigation system, the total committed pressure variation to subunits should not exceed 20% of the pressure head of the sprinkler which operates with the average pressure. Although some references often recommend giving the major part of this pressure variation to laterals, a scientific and precise criterion that allows designers to minimize the costs has not yet been developed. In this study, regarding the usual design criteria of this system in Iran and also respecting hydraulic rules, an economical analysis was conducted in order to optimize the system based on the appropriated permitted pressure head loss to each subunit. Then, the system irrigates the possible largest area by using minimum weight of pipe. The methodology consisted of 13 slope treatments for each subunit (0, ±0.1, ±0.5, ±1, ±2.5, ±5 and ±10%) and also the ratio of appropriated allowable head loss to the manifold (2.5, 5, 7.5, 10, 12.5, 15 and 17.5%). A simple software was developed to determine the size and the length of the manifold and laterals for each combination as well as their total weight and total irrigated area. Several criteria such as maximum and minimum velocity of water in the pipe, maximum head loss which occurs in 100 m of the manifold, maximum permitted head loss for each subunit and also maximum length of the laterals were considered here in order to derive practical design combinations. Because a constant inlet pressure for each subunit leads to a constant cost of energy, then the ratio of total weight of pipelines to the total irrigated area (Wtot /A0) was chosen as the standard, which helps to distinguish the best appropriation of allowable head loss to the manifold or laterals. Graphical diagrams were presented to help designers to know how to distribute the total permitted head loss between manifold and laterals. In general, results showed that total pressure head variation of each subunit greatly affects the system costs and also the total optimized appropriated pressure head loss to each subunit is greatly dependent on its own slope.
S. H. Sadeghi, S. F. Mousavi, M. Heidarpour,
Volume 16, Issue 60 (7-2012)
Abstract

Precise calculation of inlet pressure into sprinkler laterals is an important problem for proper distribution of uniformity. The adjusted average friction correction factor, FaAVG , provides the possibility of calculating the inlet pressure to mutli-outlet pressurized irrigation pipelines when the first outlet spacing from the pipe entrance is arbitrary. To investigate the effect of allowable head-loss in the lateral pipeline on inlet pressure, a new equation was developed for calculating this factor. A progression coefficient was assumed for variable discharge of the outlets. The results showed that though the inlet pressure of the lateral depends on the head loss between the outlets, it is negligible when more than 15 outlets are used. It was also concluded that when N is less than 15 and the ratio of distance between inlet and first outlet to outlet spacing is less than 1, the conventional approaches overestimate the inlet pressure. In this research, a new equation was also developed for Christiansen friction factor in which the first outlet is located at a fraction of outlet spacing. This new factor is dependent on the head loss between the first and last outlets, in addition to the number of outlets and the power of velocity equation. The results of applying this new factor showed good correlation with other researchers’ numerical results when a large number of outlets are coalesced.
N. Pourabdollah, T. Honar, R. Fatahi,
Volume 18, Issue 67 (6-2014)
Abstract

Most of researches related to hydraulic jump have been done on horizontal and rough beds, and little attempt has been made on rough beds with adverse slopes. The aim of this study was to investigate the influence of rough beds with adverse slope on hydraulic jump characteristics. The variations of energy loss in stilling basins with three adverse slopes and three different roughnesses were studied. Results showed that increase of roughness caused that relative depth of jump in stilling basins with rough bed and adverse slope decreased as compared to horizontal smooth beds. The experiments were performed on rough beds in different conditions where Froude number ranging between 4.9 and 7.8. Result showed that reduction of relative depth was about 31.15%. Results also showed that in such cases the relative energy losses are more than that for classic conditions.
A. Ahmadi, T. Honar,
Volume 18, Issue 70 (3-2015)
Abstract

One of the most important problems in the design of a stilling basin is determination of the exact location of the hydraulic jump or stabilization of the hydraulic jump. In the present study, the effects of different forms of end sills on hydraulic jump characteristics were studied. The experiments were carried out for three different forms of end sills, rectangular, square and stepped, with three heights in two distances and for Froude numbers in the range of 4.7-8.23. The results showed that the end sill with larger cross section (square and stepped) will have a greater effect on reducing sequent depths of hydraulic jump and increasing energy loss than narrow end sills. However, in this type of end sills, water fall and the risk of erosion at downstream is greater.


Engineer H. Talebikhiavi, Engineer M. Zabihi, Dr. R. Mostafazadeh,
Volume 21, Issue 2 (8-2017)
Abstract

Effective soil conservation requires a framework modelling that can evaluate erosion for different land-use scenarios. The USLE model was used to predict the reaction of appropriate land-cover/land-use scenarios in reducing sediment yield at the upland watershed of Yamchi Dam (474 km2), West Ardabil Province, Iran. Beside existing scenario, seven other land-use management scenarios were determined considering pattern of land-use through study area within a GIS-framework. Then, data inputs were prepared using terrain data, land-use map and direct observations. According to the model results, the generated erosion amount was 3.92 t/ha/yr for the current land-use (baseline scenario). For this purpose, conservation practices in dry farming slopes and implementing the scenario 5 (contour farming and remaining crop residuals) can reduce the sediment to 2.02 t/ha/yr. The lowest and highest decreases in sediment yield are projected to be through implementation of scenario 6 (irrigated farming protection with plant residuals) and 7 (biological soil conservation in dry and irrigated farming). The results indicated that, implementing scenario frameworks and evaluating appropriate land-use management scenarios can lead to the reduction of sediment entering the reservoir, and prioritizing soil conservations in the studied area.
 


A. R. Vaezi, Y. Mazloom Aliabadi,
Volume 22, Issue 1 (6-2018)
Abstract

Water loss and nutrients loss are one of the important signs of natural resource degradation in the catchments. The amount of loss of these resources is affected by several factors including the characteristics of rainfall. In this study, the data of stream discharge (Q), total dissolve solids (TDS), and total nutrient loss ratio (NR) along with rainfall characteristics were analyzed for the events   from1988 to 2002 in the Tahamchai catchment, which is owned by a regional water company. Moreover, soil properties were determined by soil sampling from different points in the catchment surface. Based on the results, there was a significant correlation between Q of the river and rainfall height (r=0.24, p<0.05), while its correlations with the rainfall intensity and duration were not statistically significant. On the one hand, this result was due to the inverse relationship between rainfall intensity and rainfall duration; on the other hand, due to the temporal variations in vthe egetation cover in the area, it controlled Q in the intensive rainfalls. The highest Q was in spring (1.68 m3 sec-1) and March (2.58 m3 sec-1). In this period, rainfall height was high and the rainfalls interval was short. Moreover, vegetation cover was weak, so it could not control surface runoff and reduce Q in the catchment. TDS and NR also significantly varied during the months and their highest values were observed in December (282.55 mg l-1) and (61.77 mg l-1), respectively. Mg2+ had the highest amount of water loss in the catchment area. A negative correlation was found between Q and TDS (r=0.41, p<0.001) and NR (r=0.31, p<0.001). This study revealed that spring and autumn were the sensitive period for water loss and nutrient loss in the catchment, respectively. Therefore, promoting the vegetation cover in early spring and reducing improper agricultural practices (tillage and fertilization) could be substantial strategies contributing to conserving the catchment’s resources.


M. Raeisi Asadabadi, M. R. Nour, R. Fattahi,
Volume 22, Issue 2 (9-2018)
Abstract

In order to optimize the irrigation system performance, it is essential to get information about water balance components in the farm. So, the objective of this study was evaluating the performance of the WFD device in determining water penetrated fate in the soil at each irrigation occurrence as one of the important components in evaluating the irrigation water efficiency. By having the water amount infiltrated in the root zone and the deep percolation amount collected and determined by WFD device, contribution of surface losses related to every irrigation occurrence can be determined by the employing water balance equation. This research was carried out in the form of completely randomized design blocks in three replications and under the treatments of 60, 80, 100 and 120% of the irrigation requirement supply of a potato plant in the research farm of Shahr-e Kord University in 2014. To gather the growing season data, before the planting operation, various WFD devices were installed at different depths and locations along furrow. In addition to WFD data, input discharge (using counter), output discharge (measured by flume type 1) and values of soil moisture (theta-probe device) were collected during the harvesting season. The results showed that the mean Nash–Satcliffe coefficient of comparison between the  values of calculated and measured surface losses corresponding to it, and also comparison of  the values of the calculated and measured residual moisture before each irrigation occurrence were obtained to be 0.87 and 0.98, respectively. Quantity of this indicator in the two conducted comparisons represented the correct and exact performance of the WFD device in the farm operation evaluation. During the farm evaluation process under the experimental furrow, distribution uniformity averages in the experimental treatments were acquired to be 75.56, 83.78, 88.06, and 90.34%, respectively. Likewise, water amount average percolation of root zone (depth losses) in experimental treatments at each irrigation occurrence was measured to be 0.02, 0.07, 0.27 and 0.47m3 for each furrow.

A. Kavian , A. Alipour, K. Soleimani, L. Gholami,
Volume 23, Issue 1 (6-2019)
Abstract

Nowadays, acid rain serves as one of the most serious environmental problems has affected many regions in the world. This phenomenon is characterized by many environmental impacts, such as soil contamination and degradation. Acid rain immediately affects soil, causing soil particles to breakdown and be dispersed; this is the first step to initiate the soil erosion. Therefore, in this study, the effect of different pH levels of acid rain (at different levels) on the soil splash was investigated under laboratory conditions using a rain simulator and a cup splash. In the experiments, acid rains, with the pH values of 3.75, 4.25, 5.25 and normal rains at three intensities of 40, 60 and 80 mmh-1, were studied; finally, a number of 36 samples were taken for statistical analyses. SPSS 23 and EXCEL 2013 software and one way and two-way ANOVA were used for the statistical analysis at a confidence level of 95%. The results showed that at the intensities of 40 and 60 mmh-1, the splash rate was significantly different in all pH treatments, and the acid rain with pH of 3.75 showed the highest splash rate. However, no significant difference was found at the rain intensity of 80 mmh-1, despite the higher splash rate at the pH of 4.25 and 5.25 treatments. Also, the results of the comparison of the means showed that the soil splash rate was also increased with enhancing rain intensity. Finally, the two-way ANOVA test showed that the simultaneous interaction effects of the two factors of pH and rain intensity on soil splash was not significant.


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb