Search published articles


Showing 7 results for Lysimeter

A. Hassanoghli, A. Liaghat, M. Mirabzadeh,
Volume 10, Issue 4 (1-2007)
Abstract

Increased chemical compounds in soil are the most important results of irrigation with domestic wastewater and treated effluents which contain some nutrients such as phosphorous (P). This process could increase the soil fertility, leading to the decrease of chemical nutrient consumption and consequently the cost of agricultural production. A research project was carried out in Tehran region for two years in order to investigate the capabilities of soil and plant in absorption and storage of wastewater contaminants, namely, phosphorous, and also the transmission of them to drain depth as a result of irrigation practice. To do the research, a series of lysimeters based on a statistical factorial experiment in the form of randomized complete design (3x3x3) were used. Raw and treated domestic wastewater, obtained from Ekbatan Housing Complex, and well water (control) were used to irrigate raw edible vegetables including parsley, carrot and tomato. The results showed that the amount of phosphorous leaching through soil to drain depth was between 0.90% and 3.56%, and between 1.03% and 4.15% of the phosphorous concentration in raw wastewater and treated one entered into the soil, respectively. Also, mass balance analyses showed the average phosphorous reduction ranged from 97.2% to 99.9% of the phosphorous entered with wastewater. During two years of study, the maximum concentration of PO4 measured in drained water was about 0.21 mg/L obtained from lysimeters irrigated with raw wastewater. This was much lower than the permissible PO4 amount for discharging the effluents to the surface water resources (6 mg/L PO4 is permitted by Iranian Environmental Protection Organization).
B Bakhtiari, A.m Liaghat, A Khalili, M.j Kjanjani,
Volume 13, Issue 50 (1-2010)
Abstract

In this study, the Penman-Monteith methods proposed by the Food and Agriculture Organization (FAO-56) and American Society of Civil Engineers (ASCE) were used for hourly ETo estimation under the semiarid climate of Kerman, Iran. Hourly ETo estimations obtained from the proposed methods were compared with measured ETo values by using a large weighing electronic lysimeter during April to September 2005 (totally 3352 hourly ETo data cases). Simple linear regression and statistical factors such as root mean square error and index of agreement were used for estimated and observed value comparison. The average of measured and estimated hourly ETo values using these methods for integrated data were 0.28 and 0.23 mm hr-1, respectively, which means that average estimated ETo values were approximately 21 percent less than the measured ETo values. This analysis was also performed for hourly data of each month during the study period. The results showed that FAO-56 Penman-Monteith underestimated ETo values by 18.4, 19.3, 26.3, 20.4, 21.4 and 22.1 percent for April to September, respectively, when compared with the measured values. Similarly, the ASCE Penman-Monteith underestimated ETo values by 17, 19.6, 18.4, 18.2, 19.7 and 20.9 percent for the same period, respectively, when compared with the lysimetric data. Finally, a set of regression equation for transformation of the estimated hourly data into the measured hourly ETo values has been presented for each month.
S. Marofi, N. Parsafar, Gh. Rahimi, F. Dashti,
Volume 16, Issue 61 (10-2012)
Abstract

In this study, a completely randomized experiment was designed with four irrigation treatments and three replicates. The irrigation programs were raw wastewater, treated wastewater, a combination of 50% raw wastewater and 50% potable water and a combination of 50% treated wastewater and 50% potable water. The experiments were run within a greenhouse. The lysimeters were built up on September 2009 and they were filled with two layers of soil. The upper (0-30 cm in depth) and lower (30-70 cm in depth) layers were sandy loam and sandy clay loam, respectively. A total of eight watering programs with an interval of elevens-day were applied. After each irrigation program, intake wastewater and drainage water of each Lysimeter was sampled in order to analyse the transport of heavy metals (Cu, Zn, Fe and Mn, Ni, Cd and Pb). Results showed that the effect of water quality was significant on percentage of transport of heavy metals. The lowest transport percentage of heavy metals belonged to raw wastewater treatment. Also, the highest percentage of transport of Cu, Zn, Fe, Ni and Pb belonged to the combination of 50% raw wastewater and 50% potable water. In most cases, we observed that the transport percentage of these elements increased by continuing the irrigation
H. Ghamar Nia, M. Jafari Zadeh, E. Miri, M.e Ghobadi,
Volume 17, Issue 66 (2-2014)
Abstract

The estimation of crop water requirement is one the most important stages for designing different irrigation systems, programming and corrected management of water resources. Therefore, to determine the water requirement for Coriandrum sativum L. a study was conducted in College of Agriculture Research Farm at Razi University in the city of Kermanshah during two years, 2010 and 2011. For this purpose, three water balance drainable lysimeters with the diameter of 1.20m and height of 1.40 m were used. During the investigation, the irrigation was determined by using data logger equipment of (IDRG). The soil humidity was determined in the field capacity condition. The evapotranspiration was calculated using water balance equation. Finally, the Coriandrum sativum L. water requirement was determined to be 722.95 and 580.64mm for years 1388-1389 and 1389-1390, respectively. Meanwhile, the potential evapotranspiration using the Penman Monteith equation was calculated to be 643.58 and 530.17mm for the first and second year of investigation, respectively.
N. Parsafar, S. Marofi ,
Volume 17, Issue 66 (2-2014)
Abstract

In this study, a completely randomized experiment was designed with five irrigation treatments and three replicates. The irrigation programs were raw wastewater (T1), treated wastewater (T2), a combination of 50% raw wastewater and 50% fresh water (T3), a combination of 50% treated wastewater and 50% fresh water (T4), and fresh water (T5). The experiments were run within a greenhouse. The lysimeters were built up in September 2009 and they were filled with a two layer soil. The upper (30 cm) and lower (40 cm) layers were sandy loam and sandy clay loam, respectively. The results showed that the effects of watering treatments on transfer coefficients of heavy metals from soil to shoots (except Cd) and tubers of potato (except Zn and Cu) were significant (p <0.01). Maximum and minimum transfer coefficients of heavy metals were observed in the (T1) and (T5) treatments, respectively. Also, the transfer coefficients of Cd from soil to shoots were lower than tubers. In the case of Zn, Cu and Pb, transfer coefficients from soil to tubers were lower than shoots. In this study, the maximum transfer coefficients to shoots were Cd (0.331-0.463), Zn (0.383-0.230), Cu (0.173-0.386) and Pb (0.003-0.057), respectively. Maximum transfer coefficients toward tubers (except T5) were Cd (0.439-0.572), Cu (0.081-0.138), Zn (0.170-0.217) and Pb (0-0.017), respectively. The combination of wastewater and fresh water use in short-term irrigation might be feasible, but a heavy metal monitoring program is necessary.
H. Modabberi, M. Mirlatifi, M. A. Gholami,
Volume 18, Issue 67 (6-2014)
Abstract

Since more than 75% of the rice fields in Iran are located in the Northern provinces i.e. Mazandaran, Guilan, and Golestan identifying the crop water requirement of rice fields is essential for water resources planning in the Northern provinces. The objective of this research was to ascertain the crop water requirement of two rice cultivars namely Hashemi and Khazar in Guilan province during 1389 growing season. Four iron barrels with diameter of 56 cm were used as lysimeters to grow the cultivars mentioned. According to a simple volume balance approach the crop water use of the four lysimeters were determined during the growing season. The elements of volume balance approach such as the depths of drainage, precipitation, and irrigation were recorded daily and the average of 5-day and 10-day periods were reported. The daily rice crop water use during the growing season was found to range from 2.4 to 6.3 mm/day with a seasonal crop water use ranging from 430 to 470 mm for Hashemi and Khazar cultivars, respectively. Daily reference evapotranspiration was computed by the FAO-Penman-Montith equation and accordingly rice crop coefficients were computed. The crop coefficient of Hashemi variety was found to be 1.1, 1.3, and 1.1 during the initial, mid, and end growth stages, respectively. In addition, the aforementioned parameters for Khazar variety were 1.2, 1.3, and 1.1.
M. Noshadi, S. Karimi,
Volume 22, Issue 3 (11-2018)
Abstract

The growth of world population and the demand for agricultural products can be regarded as one of the important issues that humanity has ever faced. There are serious concerns regarding surface and ground water pollution by nitrates because of using nitrogen fertilizers in the agriculture. Improving agricultural water management systems can reduce nitrate in drainage outflow and therefore, reduce the environmental pollution. This research was conducted to evaluate the effect of the controlled drainage and nitrogen fertilizer on nitrate leaching and environment pollution as a factorial randomized complete block design in Shiraz College of Agriculture. The treatments consisted of three fertilizer levels; 0, 200 and 300 kgN/ha, and three water table depths: free drainage, control water table at 60cm (CD60) and 90 cm (CD90) depths, respectively. According to the results, the value of drainage water and nitrate losses in the controlled drainage toward free drainage were significantly increased. The mean reduction of drainage water in CD60 and CD90, as compared to free drainage, was 59.3 and 35.7%, respectively. The decrease nitrate losses, as compared to free drainage, was 72 and 44%, respectively. The total value of nitrate leaching in 200 and 300 kgN/ha fertilizer treatments was 1.86 and 2.48 times of 0 kgN/ ha.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb