Search published articles


Showing 2 results for Matlab Software

A. Mirhashemi, M. Shayannejad,
Volume 23, Issue 1 (6-2019)
Abstract

Urban and industrial wastewaters are considered as the most contaminant of surface water. Entrance   of these pollutants to the river reduces the concentration of dissolved oxygen and aquatic life will be threatened. So, one of the main qualitative characteristics of water resources management is the concentration of dissolved oxygen. The base of the   developed model in this investigation is the convection- diffusion equation in soil. Terms of production and decay of dissolved oxygen were added to this equation. The final equation was discretized using the finite difference method with the implicit scheme. With applying the initial and boundary conditions, the equation set was solved by the Thomas algorithm. The calculations were done by programming in the MATLAB software. For the calibration and validation of the model, data obtained from two reaches of Zayanderoud River, including steel melt and Mobarakeh Steel factories, were used. The temporal and spatial variations of the dissolved oxygen were plotted and compared with the real data and the results of the MSP and CSP models. The results showed that the concentration of the dissolved oxygen could be well predicted through solving convection-diffusion equation with introducing two terms for the decay and production of oxygen. The comparison between the results of the model and two other models showed that the model led to better results in comparison to the MSP and CSP models.

A. Shahnazari, S. Sadeghi,
Volume 27, Issue 2 (9-2023)
Abstract

In the present paper, crop pattern criteria have been evaluated relying on sustainable development to increase agricultural water productivity. Seven criteria were selected as the main environmental and economic criteria and were prioritized and reviewed for important and strategic products in the Tajan catchment of Mazandaran province. Criteria prioritization was done using optimization through a genetic algorithm with an objective function based on sustainable development. Then, physical and economic productivity indices were calculated to determine the productivity value. Based on the results, in the selection of the crop pattern, firstly, the category of economic criteria and finally the category of environmental criteria have been given attention to the farmers in the current situation. But in the genetic optimization algorithm, all priorities have a similar order from the environmental point of view and then from the economic point of view although each product has its order of criteria. By this prioritization, the parameters of the cultivated area, the volume of water consumed, and the amount of chemical fertilizers have decreased on average by 26%, 34%, and 21%, respectively, and the parameters of product performance and profitability have increased by 43% and 61%, respectively. In addition to providing environmental standards and increasing sustainable development, this prioritization causes an average increase in physical productivity by 84% and an increase in economic productivity by 72%.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb