Search published articles


Showing 13 results for Maize

T. Mahmoodi-Ghehsareh, B. E. Sayed-Tabatabaei, C. Ghobadi, A. Mirlohi,
Volume 8, Issue 3 (10-2004)
Abstract

The significance of haploid plants as genetic and plant breeding tools has been recognized for a long time. Haploid production techniques including anther culture, isolated microspore culture and intergeneric hybridization between wheat × Hordeum bulbosum and wheat × maize have been used to produce homozygous lines which accelerate breeding programs. In this study, wheat × maize hybridization and anther culture techniques were used for haploid production in six wheat genotypes. The results showed that 70.7% of regenerated plants through anther culture were albino plants and only 29.2 % were green, while the plants produced through wheat × maize method were all green. Ploidy variation was not observed in plants regenerated through wheat × maize hybridization. It was concluded that wheat × maize crosses would be an appropriate and practical method for haploid production in different wheat genotypes, which in comparison with the anther culture method has a higher efficiency.
R. Hajiboland, M. K. Khosrowpanah,
Volume 9, Issue 4 (1-2006)
Abstract

Manganese toxicity occurs in many agricultural and natural ecosystems under the various soil conditions such as the nature of substrate, acidity, flooding or vicinity to the mining areas. The objective of this work was to study the effects of excess Mn in the growth medium on three important crop species, namely rice (Oryza sativa L. cv. T. Hashemi), maize (Zea mays L. cv. SC.704) and sunflower (Helianthus annuus L. Mehr). Plants were cultured in the hydroponic medium under controlled environmental conditions and treated with 0 (control), 25 50, 75 and 100 µM Mn for 12 days. Dry mass production, the effect of supplemental Mg and Ca on the toxicity expression, root respiration and K+ leakage from shoot and root tissues were studied under the Mn treatments. In order to study the effect of light intensity on the expression of toxicity symptoms, plants were cultured under the different light conditions, thereafter their growth and metal uptake and transport were studied. Sunflower plants treated with the 50 µM Mn and higher, showed dark-brown spots associated with the trichomes on the leaves and petioles. Maize plants developed interveinal chlorosis and any visual leaf symptoms was observed in rice. In all of the studied species, a great portion of the absorbed Mn was translocated into shoot, the highest transport was observed in sunflower and the lowest in maize. No significant correlation was observed between the expression of Mn toxicity and the accumulation rate of Mn. Growing under the low light intensity, in addition to the lowering biomass production, increased or decreased the toxicity effect depending on species. Mn-toxicity-induced root respiration was not associated with the differential response of species to Mn toxicity. In contrast the change of K+ leakage from shoot and root tissues was well correlated with the toxicity response of tested plants.
A. Majnooni-Heris, Sh. Zand-Parsa, A. R. Sepaskhah, A. A. Kamgar-Haghighi,
Volume 10, Issue 3 (10-2006)
Abstract

Agricultural investigations use computer models for simulation of crop growth and field water management. By using these models, the effects of plant growth parameters on crop yields are simulated, hence, the experimental costs are reduced. In this paper, the model of MSM (Maize Simulation Model) was calibrated and validated for the prediction of maize forage production at Agricultural College, Shiraz University in 1382 and 1383 by using maize forage yield under furrow irrigation with four irrigation and three nitrogen treatments. Irrigation treatments were I4, I3, I2, and I1, with the depth of water 20% greater than, equal to, 20% and 40% less than potential crop water requirements, respectively. Nitrogen treatments were N3, N2, and N1, with the application of N as urea equal to 300, 150, and 0 kg N ha-1, respectively. After calibration and validation of MSM, it was used to estimate suitable planting dates, forage yield and net requirement of water discharge for planting at different dates. The results indicated that the net requirement of water discharge was reduced by gradual planting at different planting dates. By considering different planting dates for maize, from Ordibehest 20th to Tir 10th, the planting area might be increased 17.9%, compared with single planting date on Ordibehesht 30th under a given farm water discharge and full irrigation.
S. Fallah, A. Ghalavand, M. R. Khajehpour,
Volume 11, Issue 40 (7-2007)
Abstract

It is necessary to use organic fertilizers and decrease chemical fertilizers consumption to reach sustainable agriculture. Thus, to study the effects of manure incorporation methods, and integrated effects of poultry manure with chemical fertilizers on the grain yield and yield components of maize, an experiment was conducted in 2004 at the Agricultural Research Farm of Lorestan Weather Department, 30 kms northeast of Khorramabad. The treatments were arranged in a split plot layout based on randomized complete block design with four replications. The main plots consisted of incorporation of fertilizer with soil by furrower or disk. The subplots included T0: control (no consumption of fertilizer and poultry manure) T1: 200, 100, and 100 kg ha-1 of nitrogen, phosphorus, and potassium, respectively T2: 80% of T1+ 4 ton ha-1 of poultry manure T3: 60% of T1+ 8 ton ha-1 of poultry manure T4: 40% of T1+ 12 ton ha-1 of poultry manure T5: 20% of T1+ 16 ton ha-1 of poultry manure and T6: 20 ton ha-1 of poultry manure. The results showed that incorporation of fertilizer by furrower, compared with disk, led to significant increase in plant height, 1000 seed weight and grain and biological yields. However, there were not significant differences in the number of seed per ear and harvest index between the two fertilizer incorporation methods. Fertilizer treatments caused significant increase of the treats mentioned except for the harvest index. The interaction effects were not significant for any traits. T5 treatment produced the highest grain yield, and was significantly different from T0, T1, T3 and T6 treatments. The differences between T1 (chemical nutrition system) and T6 (organic nutrition system) were not significant either. Effectiveness of integrated poultry manure and chemical fertilizers on maize yield components was higher than either poultry manure or chemical fertilizer. The results of this experiment indicated that incorporation of 16 ton poultry manure + 40, 20 and 20 kg ha-1 N, P and K with furrower might be appropriate for maize prodution under conditions similar to this experiment.
A Nehzati Pghaleh, Sh Zandparsa, A.r Sepaskhah,
Volume 12, Issue 46 (1-2009)
Abstract

Water and fertilizer applications management should be improved due to scarce resources and environmental protection aspects. An analysis of crop yield production and profit maximization was conducted to determine the optimal water and nitrogen allocation. In this study, maize grain yields were predicted for 25 different amounts of irrigation water (350-1700 mm) and 46 different rates of nitrogen application (0-450 kg N/ha) were predicted using MSM (Maize Simulation Model) model. Irrigation water was distributed in growth period based on maize evapotranspiration. 30% and 70% nitrogen fertilization was used 19 and 50 days after planting date, respectively. Based on field operational costs and present market value in Fars province, optimal amounts of applied water and nitrogen were determined in different conditions of maximum yield (Wm and Nm, respectively), maximum profit under limited land (WL and NL, respectively) and maximum profit under limited water (Ww and Nw, respectively). At present market value ( 88 Rls m-3 for water, 1946 Rls kg-1 for nitrogen and 1570 Rls kg-1 for maize grain), the amounts of Wm, WL and Ww were 1336, 1008, 844 mm, respectively, and the amounts of Nm, NL and Nw were 450 kg N ha-1. Because of the low price of nitrogen, the optimum amounts of nitrogen in the analyzed conditions were similar. If the price of nitrogen and water are increased (i.e. 30000 Rls kg-1 N and 1000 Rls m-3 water), the optimum amounts of applied nitrogen and water in the analyzed conditions are changed to 450, 120 and 210 kg N ha-1, and 1336, 899 and 874 mm, respectively.
A Farahnaki, A Dehghn, Gh Mesbahi, M Majzobi,
Volume 13, Issue 48 (7-2009)
Abstract

Salad dressing is a semisolid emulsion and a colloidal system with high consumer demand. Food polysaccharides (e.g starch) are used in the formulation of salad dressing to improve its physical properties and sensory attributes. In this research, 10% mixture of wheat or maize starches were used to produce pregelatinized starches by a double drum drier, followed by milling and sieving. The pregelatinized starches (10%) were applied in the formulation of a salad dressing instead of native starch. Viscosity (at 25 and 35◦C), Hunter color parameters of the samples were evaluated and compared. Pregelatinized starches were more effective in increasing viscosity of the samples compared to corresponding native starches, and the effect of maize starch was greater than wheat starch. Significant differences were recorded in terms of color parameters of the samples. Pregelatinized starch caused higher L values (lighter samples) while the native starch samples were creamy-light yellow. In general, it can be concluded that the pregelatinized starches had better functional properties in salad dressing compared to native starches, and the produced pregelatinized starches can be used instead of native starch in the formulation of salad dressing.
J. Zamani Babgohari , M. Afyuni , A. H. Khoshgoftarmanesh , H. R. Eshghizadeh2 ,
Volume 14, Issue 54 (1-2011)
Abstract

The management and application of organic wastes in agricultural lands decreases environmental risks and increases utilization of these matters. The objective of this research was to investigate and compare the effect of polyacryl factory sewage sludge (PSS), municipal compost (MC) and cow manure (CM) on soil properties and on yield and growth of maize (single cross 704, Zea mays L.). The treatments were control (without any organic waste) and application of PSS, MC, and CM at two rates (15 and 45 t ha-1). This research was done in the research farm of Isfahan University of Technology (Lavark-Najafabad). The experimental design was a randomized, complete block with three replications. Treatments were incorporated into the soil before the maize planting (on 23 June 2008) and soil sampling was performed after 132 days (Simultaneously with maize harvesting). Application of the organic wastes resulted in significant increase soil organic matter (SOM), total nitrogen (TN) and saturated hydraulic conductivity (Ks) and significantly decreased bulk density. However, saturated hydraulic conductivity was decreased by application of PSS. Application of 15 and 45 t ha-1 of PSS reduced Ks more than 14% and 42%, respectively, compared with control however, the reduction was significant only in the plots which received 45 t ha-1 of PSS compared with control. The results of plant yield and growth showed that leaf area index (LAI), plant length, biological yield, 1000 seed weight and seed yield increase due to the application of organic wastes.
M. Zarei, N. Saleh-Rastin, Gh. Savaghebi,
Volume 15, Issue 55 (4-2011)
Abstract

A greenhouse experiment was conducted in factorial experiment arranged as a completely randomized design (CRD) to evaluate the role of tree indigenous arbuscular mycorrhizal fungi (AMF) species originated from a polluted soil in phytoremediation of zinc polluted soils using maize as a host plant. The experiment consisted of plants inoculated with AMF (G1(Glomus intraradices), G2(Glomus mosseae) and G3(Glomus versiforme)) and G0 as non-inoculated plants and 5 levels of zinc (0, 10, 50, 100 and 500 mg kg -1) in non-sterilized sandy loam soil with three replications. According to the results of greenhouse experiment, the zinc and phosphorus uptake and also the biological yield of maize plants were significantly increased by inoculation with AMF in comparison with non-inoculated plants and also no zinc toxicity symptoms were observed. Uptake, translocation, and phytoextraction efficiency of plants inoculated with G. intraradices was more than the other treatments up to the level of 100 mg kg -1, but at the level of 50 mg kg -1 these amounts were highest in plants inoculated with G. mosseae. The efficicncy of three AMF in zinc uptake was highest at the low level of zinc. In general, under the high soil pollution (500 mg kg-1), G. mosseae was the most effective fungal species in Zn extraction and translocation while G. intraradices had the highest effectiveness for accumulation of Zn in the roots. The overall situation of G. versiforme was mostly between the two other fungal species.
M. Rabie, M. Gheysari, S.m. Mirlatifi,
Volume 17, Issue 63 (6-2013)
Abstract

Nitrate leaching from agricultural lands can pollute groundwater, and the degree of pollution caused significantly depends on agricultural practices implemented on farms. Field studies required to evaluate the effects of various agricultural management strategies on nitrate leaching are expensive and time consuming. As a result, it is suggested to use crop models to simulate the effects of management practices on nitrate leaching. Plant growth models such as DSSAT software package can simulate daily plant growth and development, and also are capable of simulating daily nitrate leaching and nitrogen uptake by plants. However, it is required to evaluate the performance of any model before using it for any specific region. In this study, the performance of nitrogen balance model of DSSAT software package was evaluated to simulate nitrate leaching from the root zone of silage maize at different levels of applied water and nitrogen fertilizer. The experiment consisted of three levels of nitrogen fertilizers, including zero, 150 and 200 kg N ha-1 and four levels of applied water 0.7SMD (soil moisture depletion), 0.85SMD, 1.0SMD and 1.13SMD. Nitrate-nitrogen leaching from 36 plots at the 60 cm depth during the growing period was measured by soil moisture suction equipment (ceramic suction cups, CSC). After calibrating the model by using field data, its performance was evaluated to simulate nitrate leaching. Maximum amount of N leaching 8.4 kg N ha-1 was obtained from over irrigation treatment with the application of 150 kg nitrogen per hectare. The model simulated nitrate leaching for this treatment as 7.8 kg N ha-1. The model consistently underestimated the nitrate leaching however, it followed the behavior of nitrate leaching during the growing season. In deficit irrigation treatments, the nitrate leaching was very low and close to zero and the model simulated the same result accordingly. The results showed that the model, in addition to phenological stages and performance indicators, can simulate nitrate leaching from the root zone and could be used to evaluate the effects of various irrigation and fertilizer management strategies on nitrate leaching.
M. Ghorchiani, Gh. Akbari, H. A. Alikhani, M. Zarei, I. Allahdadi,
Volume 17, Issue 63 (6-2013)
Abstract

In order to evaluate the effect of arbuscular mycorrhizal (AM) fungi and Pseudomonas fluorescens bacteria on phosphorus fertilizer use efficiency, mycorrhizal dependence and grain yield and dry matter yield of maize under water deficit conditions, a field experiment was conducted as split-split plot arrangement based on randomized complete block design with three replications. The treatments in this experiment were included as follows: irrigation (normal irrigation and water deficit stress based on evaporation from class A pan evaporation) combined different seed inoculations with AM and Pseudomonas fluorescens and treatment of chemical phosphate fertilizer (non- consumption of phosphate fertilizer, consumption of 50 percent of triple superphosphate fertilizer needed, and consumption of rock phosphate, based on the quantity of consumed phosphorus of triple superphosphate source). The results showed that effects of irrigation, seed inoculation with AM and Pseudomonas fluorescens biological phosphate fertilizer and chemical phosphate fertilizer were significant on yield and yield components, dry matter yield, relative agronomic efficiency and root colonization. Mild stress significantly reduced grain yield, relative agronomic efficiency and fertilizer agronomic efficiency compared to optimum irrigation. Results showed that grain and dry matter yield are highly correlated with root colonization under mild stress condition. Maximum mycorrhizal dependence was obtained in mild stress condition. Maximum relative agronomic efficiency, fertilizer agronomic efficiency, yield and yield components was related to seed inoculation with AM and Pseudomonas fluorescens. The use of triple superphosphate fertilizer were increased grain yield in comparison with rock phosphate along with inoculation of phosphate solubilizing microorganisms. However, maximum root colonization and mycorrhizal dependence was achieved in non- consumption treatment of phosphate fertilizer.
Z. Amiri, M. Gheysari, M. R. Mosaddeghi, M. S. Tabatabaei, M. Moradiannezhad,
Volume 23, Issue 2 (9-2019)
Abstract

Location of soil moisture sampling in irrigation management is of special importance due to the spatial variability of soil hydraulic characteristics and the development of root system. The objective of this study was determination of the suitable location for soil moisture sampling in drip-tape irrigation management, which is representative of the average moisture in the soil profile (θavg) as well. For this purpose, soil moisture distribution (θij) at the tassel stage of maize and one irrigation interval (68-73 day after plant) were measured at the end of season. The results showed more than 70% length of the root of plant was located in 30 cm of the soil depth. By accepting ±10% error in relation to the averaged soil moisture, some region of soil profile was determined which was in the acceptable error range and also near the averaged soil moisture (0.9θavgRec<1.1θavg). By overlapping θRec in one irrigation interval, the appropriate location for soil moisture sampling was the horizontal distance from drip-tape line to 20 cm and the depth of 10-20 cm from the soil surface. To determine the appropriate place for soil moisture sampling, the development of root system and the maximum concentrated root length density in the soil profile extracting the maximal soil moisture should be taken in to account, parallel with the averaged soil moisture.

A. Foyouji Shahrezaei, M. A. Hajabbasi,
Volume 23, Issue 3 (12-2019)
Abstract

A well healthy environment can quietly affect the life quality and human community. In recent decades the need for and utilizing fossil had increased and thus the environmental pollutions including for soil has also increased. Petroleum contaminated soils are not suitable for agricultural, residential and social usage and cause economical, ecological and agricultural damage. To cope with this challenge, the use of additives such as carbon nanotubes has expanded to soil, but the use of these elements has raised concerns about their risk to biological processes and systems, such as effects on physiology and plant growth, and there have not been much studies on this issue. In order to investigate the interaction of soil petroleum pollution and carbon nanotubes on some plant characteristics such as wet mass, dry matter and plant length, seed and maize seedling were separately treated with 0, 10, 20 and 40 mg/l carbon nanotubes at the beginning. In pots containing soil with three levels of petroleum pollution, 2.43, 2.76 and 4.16% were cultivated with 3 replications. A completely randomized design was used in the form of factorial experiments. Wet mass, dry matter and length of shoot and root of plants were determined. The results showed that petroleum pollution had a negative effect on the growth characteristics. It was also observed that application of carbon nanotubes to maize (whether seed or seedling) depending on the concentration of these materials, could have different effects on plant growth parameters.

M. Tavangar, H. R. Eshghizadeh, M. Gheysari,
Volume 24, Issue 2 (7-2020)
Abstract

The present study aimed to evaluate the growth and water use efficiencies of eight late-maturing corn hybrids in comparison to the common use of KSC704 and Maxima-FAO530 under different water-nitrogen management systems. Two irrigation regimes (based on 50% soil-water depletion as the normal irrigation and, on average. 16% less than normal as the deficit irrigation) and two nitrogen (N) application managements (3 and 16 split-application of 150 kg N from Urea, 45% N) were induced using the split-split plot experiment based on a completely randomized block design with four replications at Research Field of Isfahan University of Technology on 2017. The results showed that yield, forage and leaf area index were significantly (P<0.01) affected by the interaction of three studied factors (Irrigation × Nitrogen × Corn hybrid). For different corn hybrids, more water use efficiencies were achieved by deficit-irrigation regime and 16- split-applyication of N; in this regard, the SC719 hybrid had the highest value of 3.45 kg m-3. Generally, the performances of the studied late maturing corn hybrids were higher than those of the control hybrids of SC704 and SC530 at this planting date, which could be improved by using the deficit-irrigation regime and more split-application of the N fertilizer.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb