Search published articles


Showing 2 results for Matric Suction

M. R. Mosaddeghi, A. Hemmat, M. A. Hajabbasi,
Volume 7, Issue 1 (4-2003)
Abstract

Soil tilth is crucial to seedling emergence, plant growth, and crop yield. Soil tilth of unstable soil is very susceptible to change. Internal forces originating from matric suction can change soil physical properties. A laboratory study was conducted on pots of a surface silty clay loam soil of Khomeinishahr series (fine-loamy, mixed, thermic Typic Haplargids, USDA), located in Research Farm of Isfahan University of Technology. Soil surface subsidence, bulk density, cone index, and tensile strength were measured after first flood irrigation. Results showed that the seedbed (0-20 cm) with a bulk density of 1.2 Mg.m-3 will be changed to a massive soil with high values of bulk density, cone index, and tensile strength after soil wetting. Slaking, slumping and coalescence of the soil caused soil surface to subside about 1.5 cm in 20 cm soil layer. After irrigation, cone index and tensile strength increased abruptly with decreasing of moisture content. It is shown that the dominant source of strength (cone index and tensile strength) gain during drying is the effective stress due to matric suction. In the absence of external loads, physical state (tilth) of the soil returned back to the original state. Therefore, soil slaking and slumping and rearrangement of particles along with the internal forces are the factors leading to soil hardness.
A. Khazaei, M.r. Mosaddeghi, A.a. Mahboubi,
Volume 12, Issue 44 (7-2008)
Abstract

Soil physical and chemical properties, and test conditions might affect soil structural stability. In this study, the effects of test conditions as well as intrinsic soil properties on structural stability were investigated for selected soils from Hamedan Province. Mean weight diameter (MWD) and tensile strength (Y) of aggregates were determined by wet sieving method and indirect Brazilian test, respectively. The soil samples were pre-wetted slowly to matric suction of 200 kPa before the wet sieving. The pre-wetted samples were wet-sieved for 5, 10 and 15 min in order to simulate different hydro-mechanical stresses imposed on soil structure. Tensile strength of soil aggregates were also measured at air-dry and 500 kPa matric suction conditions. Short duration shaking (i.e. 5 min) could effectively discriminate the Hamedan soils in terms of structural stability due to their fairly low aggregate stabilities. The soil organic matter content had the highest impact on MWD followed by both clay and CaCO3 content. The same was true for the Y values i.e. OM played the highest role in mechanical strength of soil aggregates. The highest coefficient of determination (R2) was obtained between Y and the intrinsic soil properties for matric suction of 500 kPa. The organic matter content had an important role in water and mechanically stable soil aggregates. The results indicated that short-duration wet sieving (i.e. 5 min) and measurements of tensile strength at matric suction of 500 kPa could be recommended for aggregate stability assessment in Hamedan soils

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb