Search published articles


Showing 2 results for Meta-Heuristic Algorithms

F. Amirimijan, H. Shirani, I. Esfandiarpour, A. Besalatpour, H. Shekofteh,
Volume 23, Issue 3 (12-2019)
Abstract

Use of the curve gradient of the Soil Water Retention Curves (SWRC) in the inflection point (S Index) is one of the main indices for assessing the soil quality for management objectives in agricultural and garden lands. In this study Anneling Simulated – artificial neural network (SA-ANN) hybrid algorithm was used to identify the most effective soil features on estimation of S Index in Jiroft plain. For this purpose, 350 disturbed and undisturbed soils samples were collected from the agricultural and garden lands and then some physical and chemical soil properties including Sand, Silt, Clay percent, Electrical Conductivity at saturation, Bulk Density, total porosity, Organic Mater, and percent of equal Calcium Carbonate were measured. Moreover, the soil moisture amount was determined within the suctions of 0, 10, 30, 50, 100, 300, 500, 1000, 1500 KP using pressure plate. Then, the determinant features influencing the modeling of S Index were derived using SA-ANN hybrid algorithm. The results indicated that modeling precision increased by reducing the input variables. According to the sensitivity analysis, the Bulk Density had the highest sensitivity coefficient (sensitivity coefficient=0.5) and was identified as the determinant feature for modeling the S Index. So, since increasing the number of features does not necessarily increase the accuracy of modeling, reducing input features is due to cost reduction and time-consuming research.

H. Hakimi Khansar, A. Hosseinzadeh Dalir, J. Parsa, J. Shiri,
Volume 26, Issue 2 (9-2022)
Abstract

Accurate prediction of pore water pressure in the body of earth dams during construction with accurate methods is one of the most important components in managing the stability of earth dams. The main objective of this research is to develop hybrid models based on fuzzy neural inference systems and meta-heuristic optimization algorithms. In this regard, the fuzzy neural inference system and optimizing meta-heuristic algorithms including genetic algorithms (GA), particle swarm optimization algorithm (PSO), differential evolution algorithm (DE), ant colony optimization algorithm (ACOR), harmony search algorithm (HS), imperialist competitive algorithm (ICA), firefly algorithm (FA), and grey wolf optimizer algorithm (GWO) were used to improve training system. Three features including fill level, dam construction time, and reservoir level (dewatering) obtained from the dam instrumentation were selected as the inputs of hybrid models. The results showed that the hybrid model of the genetic algorithm in the test period had the best performance compared to other optimization algorithms with values of R2, RMSE, NRMSE, and MAE equal to 0.9540, 0.0866, 0.1232, and 0.0345, respectively. Also, ANFIS-GA, ANFIS-PSO, ANFIS-ICA, and ANFIS-HS hybrid algorithms performed better than ANFIS-GWO, ANFIS-FA, ANFIS-ACORE, and ANFIS-DE in improving ANFIS network training and predicting pore water pressure in the body earthen dams at the time of construction.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb