Search published articles


Showing 14 results for Mn

R. Hajiboland, M. K. Khosrowpanah,
Volume 9, Issue 4 (1-2006)
Abstract

Manganese toxicity occurs in many agricultural and natural ecosystems under the various soil conditions such as the nature of substrate, acidity, flooding or vicinity to the mining areas. The objective of this work was to study the effects of excess Mn in the growth medium on three important crop species, namely rice (Oryza sativa L. cv. T. Hashemi), maize (Zea mays L. cv. SC.704) and sunflower (Helianthus annuus L. Mehr). Plants were cultured in the hydroponic medium under controlled environmental conditions and treated with 0 (control), 25 50, 75 and 100 µM Mn for 12 days. Dry mass production, the effect of supplemental Mg and Ca on the toxicity expression, root respiration and K+ leakage from shoot and root tissues were studied under the Mn treatments. In order to study the effect of light intensity on the expression of toxicity symptoms, plants were cultured under the different light conditions, thereafter their growth and metal uptake and transport were studied. Sunflower plants treated with the 50 µM Mn and higher, showed dark-brown spots associated with the trichomes on the leaves and petioles. Maize plants developed interveinal chlorosis and any visual leaf symptoms was observed in rice. In all of the studied species, a great portion of the absorbed Mn was translocated into shoot, the highest transport was observed in sunflower and the lowest in maize. No significant correlation was observed between the expression of Mn toxicity and the accumulation rate of Mn. Growing under the low light intensity, in addition to the lowering biomass production, increased or decreased the toxicity effect depending on species. Mn-toxicity-induced root respiration was not associated with the differential response of species to Mn toxicity. In contrast the change of K+ leakage from shoot and root tissues was well correlated with the toxicity response of tested plants.
Gh. Sayyad, M. Afyuni, S. F. Mousavi,
Volume 11, Issue 1 (4-2007)
Abstract

Accumulation of heavy metals (HMs) in cultivated soils is an important environmental problem in many parts of the world. In recent years, HM leaching through preferential paths and also in the form of metal-organic acids complexes has received much attention. For this reason, the effects of plants on creating preferential flow through the soil is important. The objective of this study was to assess the mobility of Cd, Cu, Pb and Zn in a calcareous soil (Typic Haplocalcids) planted with safflower (Carthamus tinctorious). The study was conducted on 12 undisturbed soil columns (22.5 cm in diameter and 50 cm in depth) in greenhouse. The top 10 cm of soil in half of the columns were contaminated with Cd, Cu, Pb, and Zn at the rates of 19.5, 750, 150 and 1400 kg ha-1, respectively. Half of the contaminated and uncontaminated columns were planted with safflower at a rate of 20 seeds m-2. Leachate was collected continuously and analyzed for these four heavy metals. After the crop harvest, soil samples were taken at 10 cm intervals and analyzed for DTPA-extractable and water-soluble HMs concentration. Results showed that heavy metal concentrations (DTPA and soluble) of the subsoil in planted columns were more than in fallow columns. The DTPA-extractable Cd, Cu and Zn concentrations in contaminated planted columns were 3.3-, 1.5- and 1.5-times more than in contaminated fallow columns, respectively. The water-soluble Cd, Cu and Zn in planted treatments increased 2.4, 1.2- and 1.1 times more than the fallow treatment. Lead concentrations in both planted and fallow treatments were similar. Metal uptake by safflower increased such that Cd and Zn uptake was more than Cu and Pb. Cd, Cu, Pb and Zn concentrations in the leachate of planted columns increased 32.0-, 2.5-, 6.0- and 2.7- time more than the uncontaminated planted columns. In summary, although topsoil contamination increased metal uptake by safflower, however the presence of safflower increased DTPA-extractable and also soluble metal concentrations in the soil profile and therefore enhanced metal mobility. The order of metal mobility was Cd > Zn >Cu >Pb.
S.a.a. Hashemi, M. Arab Khedri,
Volume 11, Issue 42 (1-2008)
Abstract

  In order to quantitatively evaluate the sediment yield in ungauged basins, it is necessary to use empirical models. The EPM model, as a model which is using in Iran, has sometimes been evaluated. Most evaluations have often been conducted by using river's sediment information and direct measurements of dam reservoir sedimentation have been less used, while the sediment measurement method on reservoir is more carefully. 9 small watersheds from Semnan province (Iran) were selected in this research. There is a small earth dam which have been built on the outlet of each watershed in the past years that them age is 10 years. These dams have not been weirs since they have been building to now. Therefore total of sediment yield volumes of each watershed are entrapped in the dam reservoirs. The volume of sediments deposited in reservoir were calculated by surveying. Sediment's apparent specific weights were measured in each reservoir and the volume of sediments transformed into sediments weight. By EPM model the volume and weight of sediment yield were estimated. Values of sediment yield measured in reservoirs were compared with estimated values by t-test. The results showed that at level 5%, there was not any significant difference between sediment yield values estimated in reservoirs by EPM model in comparison with values of volume and weight which were measured. But determination of performance and relative root mean square error showed that EPM model has low efficiency for estimation of sediment yield in the case study of watersheds.


O. Khademi, Y. Moustofi, Z. Zamani , M.r. Fatahi Moghaddam,
Volume 12, Issue 43 (4-2008)
Abstract

In this experiment the response of persimmon fruit, cv. Karaj, to astringency removal by ethanol and the effects of this treatment on some important fruit characteristics were investigated. Fruits were harvested at three different dates and at each date based on the previous results, and then modified treatments were applied. The best ethanol astringency removal treatment in this study was 10 ml of 38% ethanol per kg fruit for 48 hours. The period after ethanol treatments had no effect on the reduction of soluble tannin concentration, although it resulted in the reduction of flesh firmness and increased soluble pectin. Ethanol treatments and also temperature conditions reduced flesh firmness and increased ground color of fruits however, the effect of ethanol treatments was more than temperature conditions. Temperature conditions increased ethylene production, thus reducing the flesh firmness and increasing the ground color index of fruits. Ethanol treatments did not increase the ethylene production, and it seems that its effects on some characteristics are due to ethanol itself or factors other than ethylene.
H. Khoshghalb, K. Arzani, M. J. Malakouti, M. Barzegar,
Volume 12, Issue 45 (10-2008)
Abstract

Changes of the main sugars and organic acids content in Asian pear (Pyrus serotina Rehd.) Cultivars ‘KS’9 and ‘KS’13 grown in Tehran were studied from fruit set to maturity. The main sugars and organic acids content in fruits were determined 1 and 2 months before harvest, at the time of harvest and 1, 2 months after harvest time using High Performance Liquid Chromatography (HPLC). Fruits were stored at 2˚C and 80-85% relative humidity (RH). There were significant differences between cultivars and time of fruit harvest in terms of sugars and organic acids content. In both studied cultivars, fructose, glucose and sorbitol increased from the first fruit sampling to one month after harvest (1 to 9% FW) and then decreased. Sucrose content decreased from 2 months before harvest to 2 months after harvest time (3 to 0.75% FW). In both studied cultivars organic acids content increased at the time of pick-up and then decreased. The highest organic acids contents in the studied cultivars were malic and ascorbic acids (345 and 41.1mg 100g-1FW in ‘KS’9 and control, respectively). The relationship between low sugar and organic acid content in fruits showed the highest correlation (0.8 to 1) in both cultivars among low flesh firmness, low total soluble solid (TSS), low dry weight and high internal browning determined in this study. Results indicated that high content of sugars and organic acids in fruit led to delayed internal browning. Asian pears with a low ascorbic acid concentration are probably more susceptible to internal browning. High correlation was observed between high sugars content and high fruit colour.
H. Oroji, A. Golchin,
Volume 16, Issue 61 (10-2012)
Abstract

Potato is one of the most important tuberous crops. To achieve optimum yield in potato, suitable brand and sufficient and balanced soil nutrients are necessary. In order to study the effects of Zinc, Manganese and Copper on potato yield and leaf and tuber concentrations of Phosphorus and Iron, a factorial pot experiment with 32 treatments was conducted in greenhouse of Soil Science Department, Zanjan University, using a completely randomized design and three replications. The study factors were four levels of Zinc(Zn0: 1.14, Zn1: 5, Zn2: 10 and Zn3: 15 mg/kg soil), four levels of Manganese(Mn0: 1.4, Mn1: 5, Mn3: 10 and Mn4: 20 mg/kg soil) and two levels of Copper (Cu0: 0.22 and Cu1: 2 mg/kg soil) which were applied to the soils of planting pots. The results showed that potato yield increased as the soil concentrations of Zinc, Manganese and copper increased to certain levels Soil application of zinc and manganese fertilizers significantly decreased leaf and tuber concentrations of Phosphorus and Iron. Soil application of copper decreased Iron concentration of leaf but not Phosphorus. The highest potato yield was obtained from the treatment of 15, 10 and 2 mg zinc, manganese and copper per kg of soil, respectively.
J. Abedi Koupai, S. S. Eslamian, M. Khaleghi,
Volume 16, Issue 62 (3-2013)
Abstract

Crisis of quality and quantity of water resources is one of the most important problems in arid and semi-arid areas such as Iran. Wastewater treatment and reuse as a potential source of water can not only compensate for the water scarcity but also can prevent the hazardous pollutants from entering the groundwater and surface water resources. There are various methods to improve water quality, among which method of filtration is an effective and efficient method to remove elements. The most important issue for filter system is the selection of adsorbent materials. In this work, the tire chips were used as adsorbent. Column adsorption tests in a pilot system were conducted in two distinct steps using two types of water, including salt water and industrial effluents. Each test was conducted as a factorial experiment with three factors based on a completely randomized design with three replications. Three factors were studied including particle size (2-5 mm and 3-5 cm), filter thickness (10, 30 and 50 cm) and sorbent contact time with solution. The results showed that adsorption rate increased by increasing the thickness of the filter and sorbent contact time with solution. The best performance of reducing the salinity was observed in the treatment with 50 centimeter thickness and 24 contact hours. The salinity of this treatment was reduced by 20.3 percent (in the test with salt water) and 11.2 percent (in the test with industrial effluents). This filter reduced the heavy metals of lead, zinc and manganese up to 99, 72.1 and 41.4 percent, respectively. Also, the performance of millimeter and centimeter particles did not show a significant difference. Generally, the tire chips showed a proper performance to improve the water quality especially for industrial wastewater.
H. R. Owliaie,
Volume 16, Issue 62 (3-2013)
Abstract

Iron and manganese oxides as well as hydroxide minerals are among active constituents in soils because they are sensitive to environmental changes and often move frequently along soil profile. Therefore, their chemical forms content and their ratios are used as a soil developmental criterion. The present study was conducted in order to evaluate the effects of topography and drainage conditions on chemical forms of Fe and Mn along a soil catena in Dasht-e- Roum plain, in Kohgilouye Province. According to the results, maximum pedogenic Fe and Mn (Fed and Mnd) was found in more stable geomorphic surfaces. Higher values of Fed and Mnd were mostly observed in surface horizons compared to soil depth. Aquic soils exhibited higher contents of poorly crystalline Fe and Mn (Feo and Mno) and higher contents of Fed and Mnd. A significant correlation between clay content and Feo, Mno, Fet and Mnt contents was found. In addition, aquic condition increased Feo/Fed, Mno/Mnd and Mnd/Fed, 3.1, 4.3 and 1.9 times respectively but decreased the Fe crystallinity index 2.6 times. Aquic soils seem to have more favorable conditions for the formation of pedogenic Mn compared to pedogenic Fe, hence higher content of Mnd/Fed was observed in these soils
S. A. A. Hashemi,
Volume 17, Issue 66 (2-2014)
Abstract

Check dams are considered as main measures for flood and sediment control in watersheds, and their uses have been rapidly increased from 1990 onward in Iran. This research is done in Darjazin watershed in north of semnan city. The check dams have been constructed from 15 years ago in two sub basins of the watershed for flood control in Mahdishar. More than 650 check dams were evaluated for effects on flood. The collected data in the field was fed to ArcGIS software. The effects of these structures on flood reduction were evaluated by HEC-GeoHMS extension and HEC-HMS model. Because of homogeneity of watershed management projects in the basin due to building more check-dams in different watercourses, any flood discharge is related to check dams. Evaluating the effects of check dams on flood by t-test showed significant differences between flood discharge before and after construction of check dams at 5 percent level. So, check dams have been able to reduce flood discharge by 16.7 percent on average.
A. Parnian, M. Chorom, N. Jafarzadeh Haghighi Fard, M. Dinarvand,
Volume 18, Issue 70 (3-2015)
Abstract

Cadmium is a trace element which is harmful to life and is considered as a dangerous pollutant. This element leads to pollution and reduction of water quality and sometimes even to toxicity through contaminated sources such as wastewater (municipal and industrial). Due to the growing population's need for more water resources and increased water resource pollution, a need for new and inexpensive methods for remediation and improving water quality is felt. Phytoremediation with aquatic macrophytes is an effective and inexpensive method for improving water quality and wastewater. In this study, biological removal of cadmium from simulated wastewater was reviewed within 11 days of cultivation of Lemna gibba in Hoagland nutrient solution, at four different concentrations of cadmium (0, 1, 2, 4, and 6 mg L-1). Maximum Bioconcentration Factor and maximum Uptake Index were calculated from 6 mg L-1 metal concentration. Maximum (4.71 g/day) and minimum (2 g/day) Biomass production measurement was obtained from 0 mg L-1 and 6 mg L-1 of pollutant concentration. The plant used in this study was able to accumulated cadmium with the efficiency of up to 91%. However, the pollutant remediation was not completed in a short time. Thus, pollutants' bioremediation from wastewater solutions by Lemna gibba, a native hydrophyte of southern Iran’s pounds, is efficient and appropriate.


S. Heydari, S. Oustan, M.r. Neyshabouri, A. Reyhanitabar,
Volume 19, Issue 72 (8-2015)
Abstract

Consequences of heavy metal accumulation in soils are of great concern. One way of decontaminating heavy metals from soils is using chelating agents, particularly EDTA. In this research, three contaminated soils (with total concentration of these metals of 10.5, 55.8 and 80.6 mmol kg-1) were collected from the surface layer of the lands surrounding a zinc-lead smelting plant in Zanjan province. The extent of Zn, Pb and Cd release by Na2H2EDTA (100 mmol kg-1 of dry soil) from these soils in column leaching experiments (both continuous and pulse addition methods) assembled into half of saturated hydraulic conductivity was assessed. In preliminary experiments, the leaching was stopped due to a drop in hydraulic conductivity. Therefore, the continuous addition method was performed with calcium nitrate as the background solution and the pulse addition method was conducted using this background solution coupled with pH adjustment to 8. Based on the results, the percentage removal of Cd as well as Pb was relatively the same for the two addition methods while the removal of Zn was 13% on average higher in the continuous addition method than in the pulse addition method. For both methods, the removal efficiencies followed the order of complex stability constants (as Pb>Zn>Cd) in a limited concentration range of EDTA to complex heavy metals. Furthermore, in contrast to Cd and Pb, a direct linear relationship was found between the percentage removal of Pb and its total amount in the soils. Surprisingly, the Pb concentration was on average only about one-twentieth of the Zn concentration. The breakthrough curves of both methods showed the mobility order of Cd>Zn>Pb. In general, it seems that the removal pattern of soil heavy metals is dependent not only on the soil type but also on the removal method.


T. Dehgan, M. A. Gholami Sefidkouhi, M. Khoshravesh, N. Samadani Langroudi,
Volume 25, Issue 1 (5-2021)
Abstract

In this research, the nitrate removal by beech leaves was investigated in batch and column systems. The batch experiment was performed to address the effect of pH, contact time, adsorbent dosage and initial nitrate ion concentration on the nitrate removal. The results showed that with an increase in pH, the removal efficiency and adsorption capacity were decreased and nitrate removal by millimeter and nano adsorbent beech leaves reached equilibrium 120 and 90 minutes after experiment, respectively. With an increase in the nitrate concentration, the removal efficiency was decreased from 59.2% to 39.7% and 82.1% to 69.9% for millimeter and the nanoparticles of Beech leaves, respectively. In fixed-bed column adsorption experiments, the flow rates of 5, 8 and 11 ml/min and the nitrate concentration of 15, 50 and 120 mg/L were studied. The results showed with an increase in the nitrate concentration from 15 to 120 mg/L, the saturation time was decreased from 240 to 150 and 360 to 270 minutes for millimeter and nanoparticles of Beech leaves, respectively. Thomas, Dose-response and Yoon-Nelson models were fitted to the results of the continuous experiments. The Thomas model fitted the experimental data with high accuracy. Compared to the adsorbents, nano-adsorbent had more adsorption capacity in the batch and column systems. 

J. Abedi Koupai, A. Chehreraz, F. Dadvand,
Volume 27, Issue 4 (12-2023)
Abstract

The scarcity of freshwater resources increases the importance of seawater and brackish water desalination processes. However, a large amount of specific energy requirements, and high operational costs, present a big challenge in adopting desalination technologies. Due to high expenses of energy, desalination of saline waters by low-cost methods is important. The objective of this research was to investigate the ability of two adsorbents (zeolite and graphene oxide) to remove salinity ions from aqueous solutions in Caspian Sea water and water of the well of the Dark zone in Isfahan. At first, some graphene oxide was made according to Homer's method. Then, the characteristics of graphene oxide were known by Fourier transform infrared spectroscopy and using an electron microscope. After that, the ability of adsorbents to remove salinity agent cations and anions was evaluated. To investigate a fixed-bed zeolite column with graphene oxide (GO) layer was used to remove Na+, K+, Ca2+, Mg2+, and Cl from 50 cc of saline water. Also, Hexadecyl trimethylamine (HDTMA) was used to modify natural zeolites. The results showed that among the adsorbents for the water of the well in the Dark zone, 30 mg graphene oxide with 13 gr zeolite had the highest adsorption rate (23.84 percent of salinity reduction), and for Caspian Sea water, 13 gr zeolite modified by surfactants had the highest adsorption rate (23.43 percent of salinity reduction). Also, the removal of cations and anion followed the sequence: K+ >Ca2+ >Mg2+ >Cl >Na+.

H. R. Ghazvinian, H. Karami, Y. Dadrasajirlou,
Volume 28, Issue 2 (8-2024)
Abstract

One method used to estimate the evaporation rate involves employing various types of evaporation pans, including the standard Colorado Sunken and Class A evaporation pans. This study aimed to investigate and compare the evaporation rates from two pans, Class A and Colorado Sunken, in Semnan City. The Colorado Sunken evaporation pan was utilized as the test pan, and the test was conducted in an open space near the Faculty of Civil Engineering at Semnan University, located in Semnan City. Evaporation measurements were recorded daily for 123 days, from June 1, 2017, to September 31, 2017. The evaporation amount from the Class A pan was obtained from the synoptic station of Semnan city, situated 2.39 km away from the test site, and was subsequently analyzed. Meteorological data, including maximum and minimum temperature, maximum and minimum relative humidity, wind speed, sunshine hours, and air pressure, were also collected from the Semnan synoptic station and compared with the experimental evaporation data. The results indicated no significant difference in the daily evaporation amount between the Class A pan and the Colorado Sunken pan during the tested periods. The best statistical distribution, based on Kolmogorov–Smirnov test, for the Class A evaporation pan and the buried Colorado pan, were selected as Error with (k-s=0.05019) and Gamma with (k-s=0.05552). The coefficient of determination between the two pans was estimated to be approximately 93%. Further analysis revealed that the rate of evaporation is most closely associated with the maximum daily temperature. Pearson's correlation coefficient for the maximum temperature with the Class A evaporation pan and the Colorado Sunken pan was found to be 0.623 and 0.647, respectively.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb