Showing 6 results for Numerical Model
M. Fathi, A. Honarbakhsh, , M. Rostami, A. Davoudian Dehkordi,
Volume 16, Issue 62 (3-2013)
Abstract
The present paper tries to describe the advantage and improvement of a numerical model when predicting government processes on Flow Rivers. With regard to the important effect of the flow velocity and shear stress forces on river bank erosion, we apply a Two-Dimensional numerical model, named CCHE2D, to simulate river flow pattern at a meandering river Khoshk-e-Rud River of Farsan, 30 Km west of Shahr-e- Kord. Various algorithms and parameters were implemented in a computational fluid dynamic model (CFD) for simulation of two-dimensional (2D) water flow to gain an insight into the capabilities of the numerical model. At this surveying, at first, we applied the topographic maps of the studied location and then, made the model geometry and calculation mesh with diverse dimensions. Finally, using the measured properties of the river flow and the Depth-Average, Two-Dimensional Hydrodynamic Model was run. Then, we obtained the results of model, such as depth and flow velocity at the river meander. Within the scope of the test cases, the model simulated water flow pattern processes at an intake, as well as a steady flow regime in a sine-shaped meandering channel by a 90_channel bend, which is the free-forming meander evolution of an initially straight channel. Because of high accuracy of this numerical model and multiple content of its internal parameters, the evaluation result of model, confirmed the measurement results. Therefore, the parameters gained from the model showed good conformity with measurement parameters at field cross-section. All results matched well with the measurements. The results also showed that using computational fluid dynamics for modeling water flow is one step closer to having a universal predictor for processes in Meandering Rivers
A. Rezaei Ahvanooei, H. Karami, F. Mousavi,
Volume 23, Issue 3 (12-2019)
Abstract
In this research, by using FLOW3D, the performance of non-linear (arced) piano key (PKW-NL) in plan and linear piano key weir (PKW-L), with equal length of weir, was compared. Results showed that nonlinearity of the weir caused 20% increase in the discharge coefficient. Investigating the velocity contours for these two weir models also showed that maximum velocity within the PKW-NL weir structure is about 30% lower than the PKW-L weir. Also, the performance of non-linear piano key weir was evaluated under inward (PKW-IC) and outward (PKW-OC) curvatures to the channel. Results showed that in the case of PKW-IC weir, the discharge coefficient was increased by 8% as compared to the PKW-OC weir. Investigating the pressure contours for these two weir models also shows that the average pressure within the PKW-IC weir structure is about 5% higher than the PKW-OC weir. This increase in pressure leads to a decrease in the speed and better distribution of flow over the weir keys.
R. Gharibvand, M. Heidarnejad, H. A. Kashkouli, H. Hasoonizadeh, A. Kmanbedast,
Volume 24, Issue 1 (5-2020)
Abstract
The flow fields over a trapezoidal labyrinth weir (two-cycle) and a piano key weir were simulated using Flow3D, studying the impact of each model on the flow field in the weirs and the coefficient of discharge in comparison with the available experimental data. Moreover, the models were investigated experimentally in a 12.5 m long, 0.3 m wide, and 0.4 m high rectangular flume under clear-water conditions. The results showed good agreement between the data from the numerical and experimental models. The piano key weirs had a higher coefficient of discharged compared with labyrinth weirs. The coefficient of discharge was observed to increase by 26 percent as the height of the PKW was increased by 50 percent (from 5 to 7.5 cm). This increase was 24 percent for labyrinth weirs.
H. Noury Hasanabady, M.r. Kavianpour, A. Khosrojerdi, H. Babazadeh,
Volume 26, Issue 3 (12-2022)
Abstract
Using a rough bed for spillway compare to common dissipation methods such as stilling basins, stepped spillways, ski jumps, and bed elements may be more efficient to boost energy dissipation. In this research, the impact of spillway continuous bed roughness on energy dissipation was investigated. For this purpose, a non-dimensional relationship was developed, and by calibrating the numerical model based on the present experimental study, energy dissipation over the spillway for three slopes of 15, 22.5, and 30 (degree) with six roughness sizes of 0.0, 0.005, 0.0072, 0.0111, 0.016, and 0.022 (m) and three discharges of 170, 110, and 90 (lit/s) was investigated. Based on the present results, using a rough bed spillway will increase energy dissipation. Also, the ratio of energy lost per meter length of rough bed spillway to that of smooth spillway increases by chute slope. The results showed that the highest amount of relative energy consumption in the presence of roughness was related to the slope of 22.5 degrees and 22.2 mm for roughness (85%), and the lowest relative energy consumption was observed in the control state (25%). As a result of the present study, a natural rough bed without concrete coating has befitted in terms of environmental aspects, construction cost, and energy loss.
R. Daneshfaraz, M. Majedi Asl, T. Omidpour Alavian,
Volume 29, Issue 1 (4-2025)
Abstract
Weirs play a crucial role in flood management and dam safety, accounting for a significant portion of the construction costs of dams. The selection of floods with long return periods for flood design is of utmost importance. However, in some cases, increasing the weir capacity by widening it may be impossible due to topographical limitations. One solution to enhance the flow capacity of weirs is the application of labyrinth weirs. These weirs increase the effective length of the weir crest within a given width, allowing for the passage of higher flow rates while maintaining similar hydraulic conditions. In this study, the hydraulic performance of labyrinth weirs is investigated using the Flow3D numerical model and laboratory data. Since laboratory experiments are time-consuming and costly, employing numerical simulations to achieve more accurate and reliable results for evaluating the hydraulic behavior of labyrinth weirs is prioritized. The results of the simulations indicate that the Flow3D software, utilizing statistical parameters such as R², DC, and RMSE, achieves values of (0.9805, 0.9725, and 0.0142), respectively. This demonstrates its capability to model the flow passing through weirs with high accuracy. The obtained values of the discharge coefficient in Flow3D show a high agreement with the laboratory data from Crookston. The approximate alignment of these results indicates the high accuracy of the numerical model. Additionally, in comparison to different discharges, the relative computational error observed for flow rates of 0.35, 0.6, and 0.44 (cubic meters per second) was approximately 0.5 percent, while for flow rates of 0.3, 0.4, and 0.57, the corresponding errors were 8, 6, and 4 percent, respectively. The results indicate that these tools can be effectively utilized in precise hydraulic analyses and the optimization of weir designs, irrigation systems, and fluid dynamics phenomena.
M. Golestani, S. F. Mousavi, H. Karami,
Volume 29, Issue 3 (10-2025)
Abstract
Groundwater is a vital resource for meeting drinking, agricultural, and industrial needs in arid and semi-arid regions of Iran. In this study, quantitative and qualitative changes in groundwater in the Garmsar Plain were modeled using GIS, MODFLOW, and MT3DMS software during the period 2011-2013. Spatial and climatic data were comprehensively processed and prepared in the GIS environment, and groundwater flow was simulated using the MODFLOW model, and water quality changes were analyzed using the MT3DMS model. After validation with field data from 2012 to 2013, the model showed acceptable accuracy with statistical indicators of mean absolute error (MAE) in the range of 0.4 to 0.5 meters and root mean square error (RMSE) between 0.5 and 0.6 meters. The modeling results showed that a 15% increase in water withdrawal led to a decrease in the water table of up to 8 meters, a constant withdrawal led to a decrease of 7 meters, and a 15% decrease in withdrawal led to a decrease of 5 meters in the water table. From a quality perspective, the decrease in withdrawal improved the quality of irrigation water but increased the concentration of some pollutants, which requires the development of effective management strategies to protect groundwater resources. The findings of this study illustrate the importance of sustainable exploitation and smart management of groundwater resources in the Garmsar Plain.