Search published articles


Showing 3 results for Numerical Modeling

A. Rezaei Ahvanooei, H. Karami, F. Mousavi,
Volume 23, Issue 3 (12-2019)
Abstract

In this research, by using FLOW3D, the performance of non-linear (arced) piano key (PKW-NL) in plan and linear piano key weir (PKW-L), with equal length of weir, was compared. Results showed that nonlinearity of the weir caused 20% increase in the discharge coefficient. Investigating the velocity contours for these two weir models also showed that maximum velocity within the PKW-NL weir structure is about 30% lower than the PKW-L weir. Also, the performance of non-linear piano key weir was evaluated under inward (PKW-IC) and outward (PKW-OC) curvatures to the channel. Results showed that in the case of PKW-IC weir, the discharge coefficient was increased by 8% as compared to the PKW-OC weir. Investigating the pressure contours for these two weir models also shows that the average pressure within the PKW-IC weir structure is about 5% higher than the PKW-OC weir. This increase in pressure leads to a decrease in the speed and better distribution of flow over the weir keys.

R. Daneshfaraz, M. Majedi Asl, T. Omidpour Alavian,
Volume 29, Issue 1 (4-2025)
Abstract

Weirs play a crucial role in flood management and dam safety, accounting for a significant portion of the construction costs of dams. The selection of floods with long return periods for flood design is of utmost importance. However, in some cases, increasing the weir capacity by widening it may be impossible due to topographical limitations. One solution to enhance the flow capacity of weirs is the application of labyrinth weirs. These weirs increase the effective length of the weir crest within a given width, allowing for the passage of higher flow rates while maintaining similar hydraulic conditions. In this study, the hydraulic performance of labyrinth weirs is investigated using the Flow3D numerical model and laboratory data. Since laboratory experiments are time-consuming and costly, employing numerical simulations to achieve more accurate and reliable results for evaluating the hydraulic behavior of labyrinth weirs is prioritized. The results of the simulations indicate that the Flow3D software, utilizing statistical parameters such as R², DC, and RMSE, achieves values of (0.9805, 0.9725, and 0.0142), respectively. This demonstrates its capability to model the flow passing through weirs with high accuracy. The obtained values of the discharge coefficient in Flow3D show a high agreement with the laboratory data from Crookston. The approximate alignment of these results indicates the high accuracy of the numerical model. Additionally, in comparison to different discharges, the relative computational error observed for flow rates of 0.35, 0.6, and 0.44 (cubic meters per second) was approximately 0.5 percent, while for flow rates of 0.3, 0.4, and 0.57, the corresponding errors were 8, 6, and 4 percent, respectively. The results indicate that these tools can be effectively utilized in precise hydraulic analyses and the optimization of weir designs, irrigation systems, and fluid dynamics phenomena.

M. Golestani, S. F. Mousavi, H. Karami,
Volume 29, Issue 3 (10-2025)
Abstract

Groundwater is a vital resource for meeting drinking, agricultural, and industrial needs in arid and semi-arid regions of Iran. In this study, quantitative and qualitative changes in groundwater in the Garmsar Plain were modeled using GIS, MODFLOW, and MT3DMS software during the period 2011-2013. Spatial and climatic data were comprehensively processed and prepared in the GIS environment, and groundwater flow was simulated using the MODFLOW model, and water quality changes were analyzed using the MT3DMS model. After validation with field data from 2012 to 2013, the model showed acceptable accuracy with statistical indicators of mean absolute error (MAE) in the range of 0.4 to 0.5 meters and root mean square error (RMSE) between 0.5 and 0.6 meters. The modeling results showed that a 15% increase in water withdrawal led to a decrease in the water table of up to 8 meters, a constant withdrawal led to a decrease of 7 meters, and a 15% decrease in withdrawal led to a decrease of 5 meters in the water table. From a quality perspective, the decrease in withdrawal improved the quality of irrigation water but increased the concentration of some pollutants, which requires the development of effective management strategies to protect groundwater resources. The findings of this study illustrate the importance of sustainable exploitation and smart management of groundwater resources in the Garmsar Plain.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb