A Karizi , T Honar ,
Volume 14, Issue 51 (4-2010)
Abstract
Side weirs as flow diversion devices are usually used as emergency weirs in large hydraulic structures like dams and irrigation and drainage networks, because of their importance they require delicate design. As a result application of numerical and simulation models play an important role in design of these hydraulic structures. In this research, the flow pattern and shear stress distribution on broad crested side weirs with different widths and entrances along with different discharges were studied by numerical solution under two and three dimensional conditions and then the results were compared with laboratory findings. These experiments were conducted in a rectangular channel with one side weir and a length of 70 cm. Experiments were done considering rounded and sharp entrances with different rounded radii and one constant discharge with intake proportions of 40 and 60 in main and branch channels, respectively. Comparison of numerical solution and experimental results show that side weirs with rounded entrance had a noticeable shear stress reduction (arrived in the bed and sides) and non-effective spinal flow, resulting in increased intake efficiency.