Showing 5 results for Nutrient Elements
Gh. Saeidi, A. Sedghi,
Volume 12, Issue 45 (10-2008)
Abstract
Rapeseed (Brassica napus L.) is one of the oilseed crops in the temperate regions and is adapted to different climate conditions. This crop can have an important role in production of vegetable oil, and providing appropriate soil fertility can increase its seed and oil yield. In order to investigate the effect of N, P, K, Fe, Zn and Mn on seed yield and other agronomic traits of rapeseed, an experiment was carried out at the Research Farm of Isfahan University of Technology in 2006. The experiment was arranged as split plot in a randomized complete block design with three replications in which eleven fertilizer treatments and two cultivars of rapeseed (Ocapi and Zarfam) were considered as the main and sub factors, respectively. The results showed that there was no significant effect of fertilizers on days to maturity, but application of NPK+Fe significantly increased the plant height in both cultivars. The fertilizer treatment had no significant effect on the number of pods per plant and seeds per pod. The interaction effects indicated that application of N, P, K, NP and NK significantly increased 1000-seed weight in Ocapi cultivar however NPK+Fe significantly decreased 1000-seed weight and non significantly increased seeds per pod in Zarfam cultivar. Application of N, NPK and NPK+Fe increased the seed yield by 13, 7 and 43%, respectively. Averaged over two cultivars, N significantly increased seed oil content, but significant interaction between fertilizers treatments and cultivars indicated that application of K and NP significantly reduced the seed oil content in Zarfam cultivar. Fertilizer treatments of N, NPK and NPK+Fe had higher effects on seed oil content and oil yield and means of these traits for fertilizer treatments of control, N, NPK and NPK+Fe were 39.7, 41.7, 39.4 and 39.8%, and 681.1, 816.4, 730.2 and 983.3 kg/ha, respectively which indicate that N and Fe increased the seed and oil yield in both cultivars. However, the application of Zn and Mn had no significant effect on seed yield and seed oil content. In this study, the variation of seed yield and oil yield was mainly due to the variation of number of pods per plant and seed yield, respectively. In conclusion, it seems that in soil and climatic conditions like this experiment, application of N and Fe can be economically important and increase the seed and oil yield in rapeseed.
H Shariatmadari, Y Rezainejad, A Abdi, A Mahmoudabadi, M Karami,
Volume 12, Issue 46 (1-2009)
Abstract
Many researchers have reported positive effects of converter sludge and slag, two by-products in Isfahan iron melting factory. In this work, the optimum rate of application and the availability of some essential elements (for plant growth) in the converter sludge and slag for corn were investigated. The converter sludge contains about 64% Fe ІІ and ІІІ oxides and some other essential elements for plant growth. The slag also contains 17% iron oxides, 52.8% calcium oxide as well as considerable amounts of some other elements. Treatments included a control, Fe-EDTA foliar spray with 5 in 1000 concentration, application of sludge in 4 levels (L1, L2, L3 and L4 equal to 5.83, 13.33, 20.83 and 26.67 ton/ha, respectively) and application of slag in 4 levels (S1, S2, S3 and S4 equal to 3.20, 7.28, 11.36 and 15.44 ton/ha, respectively) which supply 1, 2, 3 and 4 times as much as soil test recommends, based on AB-DTPA extractable Fe in the soil. Corn (Zea mays) single cross 704 was planted for the experiment. Applications of the two compounds increased the soil extractable Fe and Mn, decreased Mg but the treatment did not change the soil-extractable Zn, Cu and Ca. The corn yield also increased due to the applications of the two compounds and the maximum yield was related to L3, L4, S3 and S4 treatments. The foliar application treated the leaf chlorosis and increased the silage, grain and leaf + stalk yields however, this was not as efficient as sludge and slag application. Also applications of the two compounds increased the Fe, Mn, Zn, Cu, Ca and Mg uptake by corn. The L3 and S3 treatments can be recommended as the proper levels of these compounds as iron fertilizer.
F Rsouli, M Mafton,
Volume 12, Issue 46 (1-2009)
Abstract
Organic matter (OM) and total N (N) are relatively low in majority of the calcareous soils in Iran, and continuous use of N fertilizer would impair the quality of surface and ground water and creates other environmental hazards. Therefore, the combined use of N fertilizer and organic wastes is important to partly supply plant N requirement, improve physico-chemical properties of soil and conservation of environment. The present study was initiated in order to study the effect of two organic wastes with and /or without N enrichment on the growth and chemical composition of paddy rice and some characteristics of the soil in pot experiment. The experiment was carried out in factorial manner in a completely randomized design with three replications. Treatments were two organic matter sources (municipal solid waste compost and cow manure), four OM rates (0, 1, 2, and 4%) and three N levels (0, 75, 150 mg kg-1 soil as urea). Application of compost and cow manure increased top dry weight of rice. The highest growth of rice was obtained with 4% compost and 150 mg kg-1 N. Rice growth increased up to 2 % cow manure and was suppressed with the higher rate, due to build up of soluble salt in soil. Enhancing effect of N on rice growth was only observed with 1% cow manure and at high level of cow manure rice growth was decreased probably due to rise in soil salinity or ammonium toxicity. The mean concentration of N increased by the addition of cow manure, whereas decreased with compost application. Soil N application enhanced the mean concentration of N, and iron (Fe) and magnesium (Mn). Rice plants enriched with either of the two organic wastes accumulated more phosphorus (P), potassium (K), N, Fe, Mn, chloride (Cl) and sodium (Na) than control plants. Post harvest soil sampling indicated that organic matter significantly improved all chemical characteristics. Furthermore, soil treated with cow manure had higher soluble salt (ECe), Cl, K, OM, total nitrogen, available P, Fe and Mn and lower Zn, Cu, lead (Pb), cadmium (Cd) and sodium adsorption ratio.
M. J. Fereidooni, H. Farajee, H. R. Owliaie, E. Adhami,
Volume 16, Issue 60 (7-2012)
Abstract
Effect of urban sewage and nitrogen on soil chemical characteristics in sweet corn was evaluated in Yasouj region at 2009. Five irrigation treatments were managed common water during entire period of growing season as control (I1) urban sewage during the first half of growing season (I2) urban sewage during the second half of growing season (I3) alternate urban sewage and common water (I4) and urban sewage during entire period of growing season (I5) and three nitrogen rates (N0=0, N80= 80 and N160=160 kg N ha-1) in a completely randomized design with three replications. Results indicated that the soil N, P and K concentrations in treatment I5 had a significant difference compared to the other irrigation treatments. Irrigation levels were also exhibited a significant difference in soil organic matter and EC. Maximum and minimum of soil organic matter were observed in I5 (%0.45) and in I1 (%0.33), respectively. Maximum and minimum of soil EC were found in I5 (2.0 dsm-1) and in I1 (1.4 dsm-1), respectively. Irrigation treatments did not show a significant change in soil pH. The effect of irrigation and interaction between irrigation treatments and nitrogen rates were not significant on available forms of Fe, Zn, Cu and Mn in soil. The effect of nitrogen fertilizer was significant on soil N content. Maximum (%0.034) and minimum (%0.030) of soil nitrogen were noticed in N160 and N0, respectively.
R. Vahedi, M. H. Rasoili-Sadaghiani,
Volume 23, Issue 4 (2-2020)
Abstract
Synergistic relationships between mycorrhizal fungi (AMF) and organic compounds affect the mobility of the micronutrient elements in the rhizosphere and improve their bioavailability. In order to evaluate the effect of biochar and pruning waste compost of apple and grape trees, as well as AMF, on micronutrient bioavailability in calcareous soil at the wheat rhizosphere, an experiment was carried out in a completely randomized design under greenhouse conditions in a rhizobox study. Some factors including the organic sourses (pruning waste biochar, pruning waste compost and control), microbial inoculation (AMF and no inoculation) were considered. At the end of the growth period, Organic matter (OM) content and bioavailability of micronutrients including iron (Fe), Zinc (Zn), Copper (Cu) and Manganese (Mn) in the rhizosphere and their uptake by wheat plant were determined. The results indicated that OM, Fe, Zn, Mn and Cu were significantly increased in the rhizosphere soil under the influence of organic sources and mycorrhizal inoculation. Furthermore, biochar application in the mycorrhizal tratment resulted in 74.73% and 19.28% increase in Fe and Mn, as compared to non-inoculated conditions, in rhizosphere. The presence of mycorrhizal fungi increased the bioavailability of 94.66% and 29.54% Zn and Cu in the compost treatment, as compared to non-inoculated ones. Application of organic sources and mycorrhizal inoculation increased the micronutrient uptake and plant dry weight.