Search published articles


Showing 2 results for Oil Refinery

P. Asadi Alasvand, A. Heidari,
Volume 19, Issue 74 (1-2016)
Abstract

Technosols are modified soils affected by human activities. This study investigated genesis, classification and physicochemical properties of four pedons of Technosols developed on refused oil refinery materials and compared them with two unpolluted pedons. Mineralogical studies showed smectite as a dominant clay mineral with other clay minerals. These clay minerals adsorb oil compounds in their interlayer spaces and reduce their mobility and decomposition. Different micromorphological features resulting from oil compounds in soils, including depletion zones, types of coatings (quasi and hypocoating) and features due to horizontal and vertical movement of oil compound in soil showed dynamics of oil compounds and their effects on soil forming process. The refused petroleum compounds decrease pH and increase organic carbon, amorphous form of Iron in soils. Taking into account the presence of high amounts of gypsum and carbonate in polluted soil, the studied soils were classified as Typic Calcigypsids in Soil Taxonomy but in WRB system, due to the presence of impermeable geomembrane within 100 cm of soil surface, they were classified as Linic Technosols, showing the more precision of WRB system in their classification. 


S. Jalinousi, E. Joudaki, A. Moghadassi, M. Mahdieh,
Volume 27, Issue 4 (12-2023)
Abstract

This research presents the application of phytoremediation to remove ammonia from effluent possessing high ammonium content and alkalinity in one of the most complex refineries in Iran. The objective of this research was to find new methods to protect and preserve water resources. At first, the algae distribution was investigated. After purifying the samples, Chlorella Vulgaris was selected as resistant algae in the areas that experienced ammonia shocks. A 10-liter container and an airlift photobioreactor with similar laboratory conditions were developed to control biomass production. Experiments were conducted over 20 days and maximum biomass production occurred in the first 16-17 days. Cell density was expressed as dry cell weight in ammonia concentration from 10 mg/L to 500 mg/L. It was also observed that when the Nitrogen content of the culture medium was less than 50 mg/L, ammonia was completely removed in both methods. At a concentration of 10 mg/L, total ammonia in both methods was removed in the first week. At 50 mg/L to 100 mg/L concentrations, about 94% of ammonia was removed in the glass container and about 95% in the bioreactor. In these concentrations, with high ammonia content, the final cell density, and absorption power were significantly low and this was evident at 500 mg/L. Prevention of water evaporation and biomass settling, better control of some vital parameters including pH, temperature, light, and energy intensity, effective mass and heat transfer, and carbon dioxide concentration led to better efficiency of the airlift photobioreactor. A noteworthy point in this result was the extraordinary performance of Chlorella Vulgaris in removing toxic pollutants such as ammonia and possibly using it in the biological systems of sanitary, refineries, and petrochemicals.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb