Search published articles


Showing 3 results for Optimal Operation

E. Valizadegan, M. Shafai Bejestan, H. Mohammad Vali Samani,
Volume 15, Issue 55 (4-2011)
Abstract

Reservoir sedimentation is an unavoidable problem which has unsuitable effects on reservoirs such as decreasing of reservoir useful volume, decreasing of dam stability, unsuitable operation of operational gates and penstocks and decreasing of flood control volume. The minimization of reservoir sedimentation is a nonlinear and constrained optimization problem. Constrains imposed include reservoir storage level and releases in each time, and reservoir storage level in the end of operational period. In this study, after calibration of GSTARS3 software, one of the newest mathematical model for simulation of river and reservoir sedimentation developed by USBR, for region of Voshmgir dam, results of running of software were converted as a part of data file to an optimization model by a mediator computer program. After running the optimization model, results were converted to GSTARS3 by another mediator computer program. Then, GSTARS3 was run again with new data file, obtained from running the optimization model. Results of running of GSTARS3 were converted to the optimization model again. The continuation of this process (loop) finished when the desired accuracy was obtained. In other words, the optimum condition was obtained when the running of this loop finished. The constrained optimization problem changed to unconstrained problem using penalty function method. The Powell method, a method of direct search methods, was used to solve this unconstrained optimization problem. Capabilities of the model were demonstrated through its application to the Voshmgir dam in Gorgan for a 12 month period to obtain the optimal operation policy for minimization of reservoir sedimentation.
O. Mohammadrezapour, M. J. Zeynali,
Volume 22, Issue 1 (6-2018)
Abstract

One of the most important issues in the field of optimizing water resources management is the optimal utilization of the dam reservoirs. In the recent decades, the optimal operation of dams has been one of the most interesting issues considered by water resources planners in the country. Due to the complexities of the typical optimization methods, employing an evolutionary algorithm is regarded here. One of the most significant algorithms is the ant colony algorithm. So the aim of this study is to optimize the delivery of Golestan and Voshmgir reservoirs to meet the needs of the down lands using the elite ant colony algorithm, maximum – minimum ants, ranked ants, and particle swarm algorithms, and to compare the performance of these algorithms with each other. The considered decision variable was the release of the reservoirs in the above- mentioned dams. In this study, the data over a 5-year period, from 2006-2007 to 2011-2012, was used for modeling. The results showed that all algorithms could optimize the release amount optimally; however, the elite ant algorithm with the objective function value of 0.6407 estimated the release values with great accuracy in both dams. Also, the particle swarm algorithm with 1.275 of the objective function value was well-matched with the release values.  The ranked ant algorithm with 18.924 and Max-Min ant with 26.431 of the objective function valuewere, respectively, at the next levels of performance optimization of the release values from Golestan and Voshgar dams.

A. Donyaii, A. Sarraf, H. Ahmadi,
Volume 24, Issue 4 (2-2021)
Abstract

Optimizing the water resources operation, especially in the agricultural sector, which has the largest share in the water resources operation, is extremely important. Therefore, in this research, while introducing Whale, Gray Wolf and Crow Search Optimization Algorithms, their performance in the optimum operation of Golestan single-reservoir system Dam was evaluated with the aim of providing water demand for the downstream lands based on reliability, Reversibility, and vulnerability indices. In this optimization problem, the objective function was defined as the minimization of the total deficiency during the operation period. Meanwhile, the constraints of continuity equation, overflow, storage and reservoir release volume were applied to the objective function of the problem. Then, the results were compared with the absolute optimal value based on the nonlinear programming method obtained from GAMS software; finally, a multi-criteria decision-making model was developed to rank the optimization algorithms in terms of performance. The absolute optimal response obtained by the GAMS software based on the nonlinear programming method was 19.41. The results showed that the Gray Wolf algorithm performed better than the other algorithms in optimizing the objective function, so that the average responses in Gray Wolf, Crow Search and Whale algorithms were 92, 84 and 67% of the absolute optimal response, respectively. Furthermore, the Gray Wolf optimization algorithm performs better than the Whale and Crow Search algorithms in all parameters. In addition, the coefficient of variation of the responses obtained by the Gray Wolf algorithm is 2 and 1.43 times smaller than that in the Whale and Crow Search Algorithms, respectively. Finally, the results of the multi-criteria decision-making model showed that the gray wolf algorithm had the first rank, as compared to the other two algorithms studied in solving the problem of the optimal operation of the Golestan dam reservoir. 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb