Search published articles


Showing 2 results for P Fractions

A. Halajnia, G. H. Haghnia, A. Fotovat, R. Khorasani,
Volume 10, Issue 4 (1-2007)
Abstract

Study of phosphorus reactions over time and the role of organic matter in the calcareous soils are important for the development of P fertilizer and manure management practices. The objective of this study was to determine the effect of applied manure on P availability and its chemical forms in the soil, over time. Eight samples were collected from semi-arid calcareous soils of Mashhad plain. The samples were treated with two levels of inorganic P (0 and 300 mg P kg-1 soil as KH2PO4) and two levels of organic matter (0 and 1% cattle manure). The experiment was conducted in a completely randomized design with factorial arrangement. The treated soil samples were incubated for 2, 5, 10, 30, 60, 90 and 150 days, then analyzed for available P (Olsen-P). The result showed that only 17% of added phosphorus was available in P treatment at the end of experiment. In manure treated soils, this figure reached 34% for the same period of time. Application of manure along with P increased the recovery of applied P and CBD-P (Citrate-Bicarbonate-Dithionite). This may be due to the formation of P-organic complexes with Fe oxides. Application of manure in soil increased NaCl-NaOH-P considerably compared with P and P+OM treatments. It can be concluded that P originating from manure compared with inorganic-P may be more available for plants over the time.
F. Shahbazi, A. R. Hosseinpur, H. R. Motaghian,
Volume 24, Issue 1 (5-2020)
Abstract

In order to increase the available Phosphorous (P), chemical fertilizers are applied; however, P chemical fertilizers are transformed into low available forms over time. Organic amendments could be effective in improving the efficiency of P fertilizers. The aim of this study was to investigate the effect of P fertilizers and vermicopost on the availability and fractions of P and maize (Zea Mays L.) indices in a calcareous soil. This study was performed in a factorial completely randomized design with three replicates. The experimental factors included chemical fertilizer (0 and 50 mg/kg P) and vermicopost (0 and 1 %W). After 2 months of planting in greenhouse, the shoots of maize were removed and the maize indices (P concentration, dry matter and P uptake) were determined. Then, the soil samples taken from each pot, P available, and P fractions were evaluated by a modified method developed by Hedley et al (1982). The results showed that the effect of the interaction beyween P fertilizer and vermicopost on the available P was significant. Also, the interaction of P fertilizer and vermicopost on the soluble and exchangeable P (P<0.05) and organic P (P<0.01) was significant. By applying the P fertilizer or % 1 vermicompost, all P fractions (except Ca bound P) were increased. The results, therefore, showed that the effect of the interaction between P fertilizer and vermicopost on P concentration, dry matter and P uptake was not significant (P>0.05). Vermicopost application increased the dry matter from 6.9 to 10.5 g pot-1, while application of 50 mg kg-1 P as fertilizer increased the dry matter from 7.7 to 9.7 g pot-1. Also, by adding vermicopost (11.1%), the i P uptake was increased, as compared to 50 mg kg-1. The results, therefore, indicated that the beneficial effect of vermicompost on the dry matter and P uptake in maize was more than that of the chemical fertilizer. Moreover, P fertilizer and manure could influence P fractions and P availability. 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb