Showing 3 results for Paleosols
S. Ayoobi, A. Jalalian, M. Karimian Eghbal,
Volume 7, Issue 3 (10-2003)
Abstract
Investigation of paleosols plays a great role in paleoecological and paleoclimatological studies. They are also important in soil survey and planning, as they exhibit characteristics different from younger soils. Paleosols are those soils which formed under conditions different from present ones, and are either buried within sedimentary sequences or those which lie on persisting surfaces. Although such soils are widespread in central Iran and Zagros Zone, they have not been studied adequately. Paleosols are identified by different parameters such as morphological, physical, chemical, mineralogical, and micromorphological characteristics. In this study, morphological, physical, and chemical properties of three paleosols from Isfahan and Chaharmahal & Bakhtiary provinces were investigated. The profiles were on different landforms including alluvial fan, dissected old plain, and old lagoonal deposits. Soil profile in Segzi site, on old lagoonal deposits, had a very dark and thick layer at a depth of 45-60 cm containing some macrofossil shells. This shows that this area was covered by brackish water during the early Holocene. In Sepahanshahr profile, presence of strong clay coating and high concentrations of CaCO3 indicates a wetter environment in the past than the present conditions with a precipitation of only 100 mm. In Emam-Gheis profile, a buried paleosol was identified with strong clay coating and free CaCO3 horizons that shows more humid conditions. Evidences obtained from the three paleosols studied indicate that effective moisture in central Iran and Zagros regions during Late Pleistocene had been higher than its present levels.
S. Ayoubi, M. Karimian Eghbal, A. Jalalian,
Volume 10, Issue 1 (4-2006)
Abstract
Paleosols include soils formed under climatic condition different from the present. Although such soils are widespread in central Iran region, adequate investigations of them are yet to be carried out. Micromorphology is one of the most important tools in plaeoclimatological studies. This investigation was carried out to study microscopic features of two paleosols from Isfahan province to reconstruct the paleoclimatic condition during the Quaternary. The results of this study indicate that strong clay coatings are presented in Sepahanshahr paleosol, indicating moisture regime in the past. This paleosol is polygenetic due to calcite and gypsum accumulation during drier periods compared to clay illuviation condition. Micromorphological features in Segzi paleosol indicate that this area has experienced a swampy environment during the younger Dryas. The overall results from this study indicate that climatic oscillation evidences during Quaternary have been preserved in paleosols from Isfahan region.
S. Sanjari, M. H. Farpoor, I. Esfandiarpour Borujeni, M. K. Eghbal,
Volume 15, Issue 58 (3-2012)
Abstract
Paleosols provide invaluable data on paleoclimatic conditions of the area. These soils widely exist in central Iran. Micromorphology and clay mineralogy are among valuable techniques which are useful for interpretation and identification of these soils. The present research was performed to compare the micromorphology and clay mineralogy of paleosols and modern soils of Jiroft area. After field studies, 4 pedons (located on different geomorphic surfaces including stable mantled pediment, stable and unstable transitional surfaces of pediment and alluvial plain, and stable surface of alluvial plain) were sampled for physicochemical, micromorphological, and clay mineralogical analyses. Clay coatings in argillic horizons of paleosols were found during micromorphology observations. On the other hand, clay coatings in present soils were only found in natric horizons, which were attributed to high amounts of Na in these soils. Moreover, smectite, palygorskite, illite, chlorite, and kaolinite clay minerals were recognized in paleosols, but chlorite was not detected in modern soils. The presence of palygorskite in the soils under study was related to the stability of geomorphic surface. Results of the present research showed that a more humid climate was present at the time of paleosols formation.