Search published articles


Showing 3 results for Particle Swarm Optimization

D. Rajabi, H. Karami, Kh. Hosseini, S. F. Mousavi , S. A. Hashemi,
Volume 19, Issue 73 (11-2015)
Abstract

Non-linear Muskingum model is an efficient method for flood routing. However, the efficiency of this method is influenced by three applied parameters. Therefore, efficiency assessment of Imperialist Competition Algorithm (ICA) to evaluate optimum parameters of non-linear Muskingum model was addressed in this study. In addition to ICA, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) were also used to find an available criterion to verify ICA. In this regard, ICA was applied for Wilson flood routing then, routing of two flood events of DoAab Samsami River was investigated. In case of Wilson flood, the target function was considered as the sum of squared deviation (SSQ) of observed and calculated dischargem. Routing two other floods, in addition to SSQ, another target function was also considered as the sum of absolute deviations of observed and calculated discharge. For the first floodwater based on SSQ, GA indicated the best performance however, ICA was in the first place, based on SAD. For the second floodwater, based on both target functions, ICA indicated a better operation. According to the obtained results, it can be said that ICA could be recommended as an appropriate method to evaluate the parameters of Muskingum non-linear model.


M. A. Geranmehr, M. R. Chamani, K. Asghari,
Volume 22, Issue 3 (11-2018)
Abstract

A water distribution network (WDN) may not be able to satisfy all required demands when it’s in the pressure deficit mode or under over-loaded demand conditions. Analysis of the network in this mode requires pressure dependent analysis (PDA). Unlike demand driven analysis (DDA), PDA needs an extra equation for every node to relate the nodal demand and the nodal pressure; so it should be solved with the other network’s equations simultaneously. In this paper, based on the Particle Swarm Optimization (PSO) algorithm, a decision support system has been developed by using MATLAB and EPANET for PDA simulation in WDNs. A four-loop network selected from the literature was analyzed using different scenarios and different pressure dependent functions presented by the previous investigations. The results showed that the proposed model (PSO-PDA) was as accurate as the previous ones and provided better convergence. The results of the nodes’ pressure and discharge also indicated minor differences obtained by different PDA functions. However, the differences between the results of PDA and DDA were considerable.

S. Chavoshi,
Volume 22, Issue 4 (3-2019)
Abstract

Regional flood frequency studies are initialized by the delineation of the homogeneous catchments. This study was based on "Region of Influence" concept, aiming to find the similar catchments in the south of Caspian Sea. The methodology utilized the Particle Swarm Optimization Algorithm, PSO, to optimize the fuzzy system over a dataset of catchment properties. The main catchment variables in relation to flood were determined by the principle component analysis method and employed as the inputs in the fuzzy system. Catchments grouping was performed over these fuzzy input variables by the iterative process. The optimum similar groups were obtained by PSO, and the heterogeneous L-moment index was used as the termination criterion for the optimization process. A total of 61 hydrometric stations located in the study area were selected and their relevant catchments' physical, climatic and hydrologic properties in relation to flood were studied. Principle Component Analysis by Variomax Rotation Factor over the catchments datasets tended to four out of 16 physical variables, including area, mean elevation, Gravelious Factor and Form Factor, as the main parameters in terms of homogeneity with 84 percent of accumulative variance. These variables, as well as mean annual rainfall, were used as the input data to define the fuzzy system. PSO algorithm was then employed to optimize the developed fuzzy system. The developed algorithm tended to yield the best result in the 9th iteration with 26 and 22 for the minimum average and the optimum values of cost function, respectively. The topology of the resulting algorithm included inertia weight, local and acceleration rates, the number of generations and population size, with the values of 0.7298, 1.4962, 1.4962, 10 and 5, respectively. This study tended to a total of 61 regions of influence, proportional to the relevant 61 sites. According to the geographical location of the catchments in the region, it could be concluded that the geographical proximity doesn't necessarily involve homogeneity. The obtained results indicated the efficient potential of PSO-FES in the delineation of the homogenous catchments in the study area.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb