Search published articles


Showing 4 results for Pedogenic

Ali Ashraf Amiri Nejad, Majid Bagher Nejad,
Volume 2, Issue 4 (1-1999)
Abstract

The calcification of soils and the effects of topography on this process were studied in semi-arid regions of Kermanshah. From a toposequence, based on the previous soil surveys of the region, five profiles were selected, and field studies and laboratory analyses were carried out on soils. Alluvial - colluvial fans, piedmont alluvial plains, and old plateaux were three main physiographies on the selected toposequence. Soil moisture and temperature regimes were Xeric and Thermic, respectively. The results indicate that redistribution of carbonates and soil formation processes may be categorized in four specific stages to be described in the text. Accumulation of calcium carbonates in soil profiles showed two basic forms: one in sandy layers of fine - textured soil profiles under the influence of abrupt textural changes and lower permeability, and the second in subsurface horizons of soils with calcareous parent material. The morphological evidences showed that in addition to translocation from upper horizons of carbonates by solution and suspension, physical movements to subsurface layers of fine calcareous materials have also affected the formation of calcic horizons. In other words, CaCO3 may have moved as fine particles through soil cracks and subsequently accumulated in the lower horizons. Soil mineralogy showed considerable amounts of illite, Chlorite, smectite and palygorskite clay minerals. Some pedogenic transformations of illite and chlorite may have caused formation of smectite and palygorskite.
H Owliaie, E Adhami, M Chakerhosseini, M Rajaee, A Kasraian,
Volume 12, Issue 46 (1-2009)
Abstract

Magnetic susceptibility (χ) measurements are widely used for the evaluation of soil profile development. Fourteen soil profiles were studied in a relatively wide range of climatic conditions in Fars Province. Citrate-bicarbonate-dithionite (CBD) extraction and micro CT-Scan images were used to evaluate the source of magnetic susceptibility. The results showed that soil samples lost 23 to 91 percent of their magnetic susceptibility after CBD extraction (χCBD), reflecting differences in the source (pedogenic or lithogenic) of magnetic susceptibility. Greater values of the decrease were noticed mostly in well developed soil profiles as well as in soil surface. 22 to 89% of the decrease was observed in frequency dependence of magnetic susceptibility (χfd) after CBD extraction. A significant positive correlation (P<0.01) was obtained between χCBD and χfd in the soil studied. Micro CT-Scan images with a spatial resolution of 33 µm showed lithogenic magnetic Fe oxide (magnetite) grains.
Sh Ghergherechi, F Khormali, Sh Ayoubi,
Volume 14, Issue 51 (4-2010)
Abstract

Gypsum is the most common sulfate mineral in soils of arid and semi-arid regions. Two hundred million hectares of the earth’s surface and about 28 million hectares of Iranian arid soils are covered by gypsiferous soils. The studied soils consist of alluvial plane and eolian plains in northern Iran. Soils were classified as Haplocambids, Aquisalids and Endoaquepts. In this study, genesis, formation and development of gypsum in soils were investigated. Study area includes different geomorphic surfaces from the upper watershed to alluvial plains. Gypsum crystals without considering their size, shape, arrangement are determined as pedogenic. In the weakly-developed horizons, in aridic moisture regimes, formation of euhedral pedogenic gypsum crystals and incomplete infilling of voids was dominant. In the well-developed soils, in xeric moisture regime, gypsum crystals are oriented and the perpendicular in arrangement of crystals along pores is dominants. Gypsum crystals occur in different shapes such as lenticular, tabular, and rosette-like and fan arrangement. Origin of gypsum in weakly-developed soils was weathered gypsiferous marls in upper Atrak basin. The source of gypsum in the soils with shallow ground water is high content of sulfate dissolved in soil solutions. In horizons affected by fluctuation of ground water contaning sulphur, euhedral tabular shape is dominant. In well-developed soils, based on Snowball morphology, gypsum is classified as stage II nodule. Results showed that there is no relationship between formation of the snowball morphology, b-fabric and kind of diagnostic horizons (A, B and C).
V. Moradinasab, S. Hojati, A. Landi, A. Faz Cano,
Volume 27, Issue 2 (9-2023)
Abstract

Parent material and topography are among the soil-forming factors that affect soil evolution by influencing different parameters. This study was conducted to compare the effect of marl and calcareous parent materials in different slope positions, including the summit, shoulder, foot-, and toe-slopes on soil clay mineralogy in the Karoon 3 Basin, east of Khuzestan Province. Four soil profiles in each of the two topo-sequences were dug. They were sampled based on their genetic horizons and some physical, chemical properties, and clay mineralogy were measured. The results showed that the type and abundance of clay minerals identified for both parent materials were more affected by topo-sequence position. The composition of minerals identified in the topo-sequence with marl parent materials included kaolinite, palygorskite, smectite, chlorite, mica, and quartz, and in the topo-sequence with calcareous parent materials, palygorskite, smectite, chlorite, mica minerals, and quartz, and most of the identified minerals were also observed in all positions in the C horizon. However, in marl parent materials kaolinite, and calcareous parent materials, smectite seems to have been formed pedogenically. The result of the association between Weaver and Beck indicated that most of the clay minerals are in the equilibrium of Palygorskite.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb