Search published articles


Showing 2 results for Phosphorus Fractionation

Majid Hejazi Mehrizi, Hossein Shariatmadari, Majid ََafyuni,
Volume 17, Issue 64 (9-2013)
Abstract

Application of sewage sludge has been considered as an organic fertilizer in arid and semi-arid regions of Iran. This study was conducted to investigate cumulative and residual effects of sewage sludge on soil inorganic fractions and their relation to phosphorus (P) availability. Two levels of application (50 and 100 Mg ha-1) and three consecutive times of sewage sludge application (1, 3 and 5 years) with a control treatment were studied in a randomized complete block split plot design with three replications. Composite soil samples were collected from 0-30 depth at the end of 5th year of application. Increasing the rate and application year of sewage sludge enhanced dicalcium phosphate (Ca2-P), octacalcium phosphate (Ca8-P), apatite (Ca10-P), aluminum phosphate (Al-P), iron phosphate (Fe-P) and available P but decreased occluded P (OC-P). Residual effect of sewage sludge application resulted in increased inorganic fractions in blocks treated for 1 year compared to control. Positive correlations were observed between inorganic P fractions and Olsen P, wheat yield and P uptake (except OC-P). We concluded that inorganic P fractions and P availability increased in sewage sludge amended soil.
S. F. Hashemi, R. Zalaghi, N. Enayatizamir,
Volume 26, Issue 1 (5-2022)
Abstract

This study investigated the effect of the inoculation of the soil with some phosphorus solubilizing microorganisms (PSM) on inorganic P fractions in sandy soil enriched with inorganic and organic amendments. A factorial experiment arrangement was performed in a completely randomized design with three replications, using two factors: microorganisms (control, Entrobacter cloacae, Brevundimonas, and piriformospora indica) and amendments (control, (5%) apatite, (5%) apatite + (3%) zeolite, (5%) apatite + (1%) molasses). A 60-days incubation was performed after the application of treatments. Inorganic P fractionation and alkaline phosphatase activity of soil were measured at the end of the experiment. Phosphorus distribution in soil was as follow: octacalcium phosphate > apatite P > dicalcium phosphate > Olsen p > aluminium phosphate > iron phosphate. The application of apatite increased all of the P mineral fractions. The application of zeolite-appatie was very effective and although did not increase Olsen P (probably because of the low cation exchange capacity of soil), had a significant effect (p<0.05) on other P forms and caused dicalcium phosphate to increase (69.2%) and apatite P and octaclcium phosphate to decrease (34.8% and 60.0%, respectively) compared to apatite application. Application of molasses resulted in significant increases in dicalcium phosphate and octacalcium phosphate (48.9% and 29.3%, respectively) and decreases in apatite P and Olsen P (62.1% and 63.9%, respectively). Microbial inoculation resulted in a significant increase in Olsen P and dicalcium phosphate and a decrease in octacalcium phosphate and apatite P; showing the ability of these organisms to increase the phosphorus availability. Entrobacter and Piriformospora indica were more effective than Brevundimonas. It seems that microorganisms in different substrates had used different mechanisms; such that in apatite and apatite-molasses treatments microbial inoculation resulted in an increase in alkaline phosphatase activity, but in zeolite-apatite treatment, pH had decreased indicating the organic acid production by microorganisms. 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb