Search published articles


Showing 2 results for Phosphorus Fractions

R. Dehghan, H. Shariatmadari, H. Khademi,
Volume 11, Issue 42 (1-2008)
Abstract

  Studying soil phosphorus fractions is useful in understanding soil pedogenesis as well as soil fertility. In this reseach, 20 soil samples were taken from different depths of 0-30 and 30-60 cm of upper-slope, mid-slope and lower-slope positions of four toposequences in arid (Jei and Ziar in Isfahan) and semiarid (Farokhshahr and Shahrekord) regions. In each toposequence, the soil depth was relatively low at the upper-slope position and increased toward the lower-slope. The soils in upper-slope and mid-slope were under scarce native vegetation where the soil in lower-slope was under farming activities. Soil phosphorus (P) fractionation was carried out using sequential extraction. The total soil phosphorus was in the range of 302-1135 with an average of 715 mg/kg. About 65-89% of total phosphorus were inorganic, and 11-35% organic. The amount of inorganic and organic P in the soil samples was in the range of 204-897 with an average of 571, and 70-238 with an average of 114 mg/kg, respectively. The amount of total, inorganic and organic P increased from upper-slope toward the arable lands and decreased from topsoil to subsoil in all toposequences. In the studied soils, apatite ( Ca10-P ), aluminum phosphates(Al-P), octacalcium phosphates( Ca8-P ), iron phosphates (Fe-P), iron oxides occluded phosphates( OC-P ) and dicalcium phosphates( Ca2-P ) were the major constituents of the soil inorganic phosphates, respectively.


N. Najafi, H. Towfighi,
Volume 18, Issue 67 (6-2014)
Abstract

Phosphorus behavior in waterlogged soils is significantly different from non-waterlogged soils. Changes in available phosphorus and inorganic phosphorus fractions after waterlogging in the paddy soils of north of Iran were studied in a laboratory research. A factorial experiment in a completely randomized design with two replications was performed with factors of soil at 14 levels (10 alkaline-calcareous and 4 non-calcareous or acid soils) and duration of waterlogging period at three levels (0, 30, 90 days). At the end of waterlogging period, phosphorus fractions in calcareous soils by Jiang and Gu method and in non-calcareous soils by Kuo method and available-P by Olsen method were determined. The results showed that the level of available-P in all soils was increased 90 days after waterlogging (on the average 2.3 times). In general, all P fractions were changed significantly after waterlogging and the amount of change was different depending on P fraction, soil type, and duration of waterlogging period. These results indicated the complex behavior of P in soils. The Al-phosphates were increased in 12 out of 14 calcareous and non-calcareous soils 90 days after waterlogging compared with air-dry soil. The Fe-phosphates were decreased in 9 out of 10 calcareous soils 90 days after waterlogging compared with air-dry soil while the effect of duration of waterlogging period on the Fe-phosphates in non-calcareous soils was not significant. The readily soluble-P in non-calcareous soils increased 30 and 90 days after waterlogging. The results indicated that some inorganic P fractions transformed into other fractions and probably organic P transformed into inorganic P during soil waterlogging period.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb