Showing 2 results for Phosphorus.
M. Hajian Shahri, M. Abbasi,
Volume 8, Issue 4 (1-2005)
Abstract
In order to investigate variations of spore population, root colonization and also to determine mycorrhizal symbiosis in the root and rhizosphere of Pistachio trees (Pistacia vera) in natural forests, two study stations in Kalat (Chachaeh) and Sarakhs (Shorlogh) regions were selected. Sampling from soil and root of the trees were taken from under the canopy and from a depth of 30 cm. On a monthly basis. The roots were stained and the colonization rate and the variations of spore population were measured. Some soil characteristics including pH, moisture, organic material percentage and available phosphorus were determined, The correlation coefficients between the measured factors were calculated. The results indicated that vesicular – arbuscular mycorrhiza (VAM) was the only symbiotic mycorriza of pistachio trees. Average amounts of root colonization were 13% and 11% in Chahchaheh and Shorlogh stations, respectively. Also, average numbers of spores per 1 gram of dry soil in the above stations were 12 and 10, respectively. The correlation between the variation of spore population and colonization levels was positive but the correlation between spore population and soil moisture, organic material, available phosphorus and pH was negative.
H. Nadian,
Volume 15, Issue 57 (10-2011)
Abstract
Effect of drought stress and mycorrhizal symbiosis on growth and phosphorus (P) uptake by two sorghum cultivars different in root morphology was studied in a pot experiment. A factorial experiment with a randomized complete block design was performed. In this study, sorghum speed feed cultivar with high root proliferation and branching and sorghum KFS2 cultivar with low root proliferation and branching were colonized by Glomus intraradices. All plants were watered equally in the first three weeks to establish them. Drought stress was applied from the week four and the plants were watered when 40% (T1), 60% (T2) and 80% (T3) of the available water was consumed. Results showed that in both sorghum cultivars, plant dry weight decreased as drought stress was increased. However, dry weight of mycorrhizal plants was higher than that of non-mycorrhizal plants at all levels of drought stress. This increase for speed feed cultivar was greater than for KFS2 cultivar. Phosphorus concentration and total P uptake in shoot of both mycorrhizal plants were greater than those of non-mycorrhizal plants. P accumulation in both cultivars decreased by increasing drought stress due to the decline in plant biomass. However, P accumulation per unit length of colonized root increased by increasing drought stress. The greater percentage of root colonization and the increased total length of external hyphae per unit length of colonized root of KFS2 cultivar led to an increase in mycorrhizal growth response and improved P nutrition of KFS2 cultivar compared to those of speed feed cultivar.