Search published articles


Showing 5 results for Physical Model

H. Samadi-Boroujeni, M. Shafaei-Bajestan, M. Fathi Moghadam,
Volume 11, Issue 40 (7-2007)
Abstract

Sedimentation and consolidation of cohesive sediments near the dam body can cause many problems such as clogging the bottom outlets and entering the sediments into the hydropower intakes. Flushing of these sediments through the bottom outlet will be successful only if the hydraulic conditions are designed according to the physical and mechanical properties of consolidated sediments. During the past decades many researches have been conducted on the distribution of non cohesive sediments in the reservoir, yet little information is available for cohesive sediments. Therefore the main purpose of this study is to conduct a physical model study to investigate the process of sedimentation and consolidation of cohesive sediments in the dam reservoir. The experimental tests were conducted in a settling column test with a height of 3.8 m and diameter of 0.3m. The sediment samples were collected from the Dez dam reservoir since it is predicted that in less than 5 years the sediment will reach to such an elevation that can enter into the hydropower intakes. The obtained results show that there is a an algorithmic relationship between the time and changing of the sediment concentration during the sedimentation and self-weight consolidation processes. This process can be divided into four separate phases. It is also of note that in this paper the effective stress-void ratio and coefficient of permeability – void ratio relationship were obtained as a power relationship, which are in agreement with the results obtained by other investigators. These relationships can be used as primary data in the mathematical model of sedimentation and consolidation.
H. Goleij, J. Ahadiyan, M. Ghomeshi, H. Arjmandi,
Volume 18, Issue 69 (12-2014)
Abstract

While the mass density current penetrates the stagnant fluid, a plunge point occurs. In this regard, the boundary of the dense fluid with ambient fluid is determined at the plunge point height. In this research, the hydraulic parameters of the dense flow and the bed slope of the stagnant fluid which have a significant effect on the plunge point have been investigated under the two turbulence models: the k- and the RNG at the Flow-3D model. To achieve the purpose of this research, a physical model was set up at the hydraulics laboratory of Shahid Chamran University (SCU), Ahwaz, Iran. Then, using the Flow-3D model with both the k- and the RNG turbulence model, the height of the plunge point was simulated according to the same experimental condition. Findings showed that the predicted depth under the RNG model is closer to the results of the physical model. For example, the k- and RNG model for the 12% slope can estimate the plunge point depth by 30% and 12.28% respectively more than the experimental data. However, for all the slopes, the k-e model can on average overestimate by 27% and RNG model 10.5% more than the results of experimental data. The statistical analysis showed that the RNG model predicts the plunge point depths with a satisfactory precision.


E. Gravandi, A. Kamanbeadst, A. R. Masjedi, M. Heidarnejad, A. Bordbar,
Volume 22, Issue 3 (11-2018)
Abstract

Rivers has long been regarded as one of the most basic human water supplies. If the topography, a morphology, water requirements conditions, etc. allow water to be transferred to gravity, the use of the dike can have a significant impact on the flow rate and the sediment input to Intake. Dike design needs to consider several parameters such as position, length, type, etc. Using a good design can increase the input flow rate and reduce the sediment entering it. In this study, to evaluate the dike impact on flow hydraulic conditions in the Intake with different situations, 30, 45, 60 and 90 degrees two simple L-shaped dikes in the upstream and downstream Intake and for five inlet flows (0.7, 1.12, 2.84, 5.04 and 6.23 Lit/s) were considered in the laboratory flume made by the author as a physical model to simulate the flow of the basin; then different effects of the dike on the hydraulic flow were studied. The results of the tests showed that the L-shaped dike in the upstream and downstream Intake in the internal arc flume increased the inflow flow rate into the Intake. Also, the best angle of deviation for the maximum flow entered the Intake angle of 60 degrees.

A. Saki, A. A. Kamanbedast, A. Masjedi, M. Heidarnejad, A. Bordbar,
Volume 23, Issue 4 (12-2019)
Abstract

After Hamidieh Diversion Dam near the city of Hamidieh, Karkheh River is divided into two streams known as Hufel and Nissan. At the lower flow rates, Nissan makes up a greater share than Hufel due to the steeper slope of the former. This study attempted to construct a hydraulic structure to appropriately divide water flow in Hufel. In a laboratory experiment, a flume with a 90-degree bend was used at Islamic Azad University of Ahvaz. Various experiments were conducted at different widths and heights. Furthermore, this model was simulated through CCHE2D, the results of which were compared against those of physical and mathematical models. The results indicated that the weir height increased the deviation flow percentage to the Hufel stream due to rising water level. Moreover, the deviation flow percentage to Hufel was declined as the weir width was increased due to falling water level. At Hufel, the installation of rectangular weir in different dimensions yielded the minimum of 34.3% and the maximum of 61.5% increase in the flow rate. In the normal mode without any weirs installed, however, there would be an increase in the flow rate, as compared to the mode where a weir has been installed. This can be associated with the flow controlled by the weir. On average, the deviation flow rate was increased by 2.8% in the weir mode and 7.7% in the weir-less one. An increase in the Froude number from 0.21 to 0.38 led to a lower average deviation flow rate by 19.3%. Moreover, the results of the simulation through CCHE2D were demonstrated to be largely similar to those of physical model experiments. However, an increase in the Froude number did not lead to a decline in the deviation flow rate (i.e. it remained constant). This trend was inconsistent with the results of the physical model.

S. A. Banishoaib, A. Bordbar, A. A. Kamanbedast, A. Masjedi, M. Heidarnejad,
Volume 23, Issue 4 (2-2020)
Abstract

A ‘spillway’ is a structure used to provide the controlled release of flood water from upstream into downstream area of a dam. As an important component of every dam, a spillway should be constructed strongly, reliably and efficiently to be used at any moment. Labyrinth and stepped spillways are presented as appropriate modifications to those spillways hardly capable of managing the maximum potential discharge. Owing to their nonlinear crests for a given width, labyrinth and stepped spillways have a larger discharge rate than linear- crest spillways at an identical height. Compared to other energy dissipaters, the combination of stepped and labyrinth spillways is known as a very strong energy dissipater. In the following part, the combination of these two structures and their dimensional change for increasing the water- energy dissipation are addressed. To conduct this study, an experimental flume with a 90- degree bend in the Islamic Azad University of Ahwaz was used. In total, 90 experiments were conducted on three different labyrinth- shape stepped spillway models with two different lengths, three different widths, and five different discharges. Analysis of the results showed a greater energy loss reduction in triangular rather than rectangular or trapezoidal labyrinth- shape stepped spillways. In addition, energy loss was greater in labyrinth spillways with two cycles than those with one cycle. Energy loss was increased by raising the Froude number from 0.05 to 0.1; in contrast, energy loss was decreased with increasing the Froude number from 0.1 to 1.0, which was due to the submergence of steps, a decrease in the roughness of steps and an increase in the intensity of aeration.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb