Search published articles


Showing 4 results for Piano Key Weir

R. Gharibvand, M. Heidarnejad, H. A. Kashkouli, H. Hasoonizadeh, A. Kmanbedast,
Volume 24, Issue 1 (5-2020)
Abstract

The flow fields over a trapezoidal labyrinth weir (two-cycle) and a piano key weir were simulated using Flow3D, studying the impact of each model on the flow field in the weirs and the coefficient of discharge in comparison with the available experimental data. Moreover, the models were investigated experimentally in a 12.5 m long, 0.3 m wide, and 0.4 m high rectangular flume under clear-water conditions. The results showed good agreement between the data from the numerical and experimental models. The piano key weirs had a higher coefficient of discharged compared with labyrinth weirs. The coefficient of discharge was observed to increase by 26 percent as the height of the PKW was increased by 50 percent (from 5 to 7.5 cm). This increase was 24 percent for labyrinth weirs.

Y. Neamah Abdulhasan, A. Khoshfetrat,
Volume 28, Issue 3 (10-2024)
Abstract

Piano key weirs are a type of non-linear weir that have a higher discharge coefficient than similar linear weirs. These hydraulic structures have a lightweight foundation and a simple structure is designed and installed on dams and drainage channels. Due to the high efficiency of these weirs, the investigation of downstream scour and ways to reduce it has been the focus of engineers in recent years. In the present study, a trapezoidal type C piano key weir, three discharges, and three tailwater depths were used. Two obstacles with heights of 0.02 and 0.04 meters were also used at the end of the weir exit keys. The results showed that the presence of an obstacle reduces scour at the toe of the weir. The amount of reduction in scour at the toe of the weir was greater in the weir with a larger obstacle height than in the weir with a smaller obstacle height, and in both cases was less than in the simple weir. The presence of an obstacle reduces the maximum depth of scour and moves the distance of the maximum depth of scour away from the toe of the weir. In the weir with obstacle heights of 0.02 and 0.04 meters, compared to the weir without an obstacle, the amount of maximum scour depth is approximately 16.4% and 26.9% less, and the distance of the maximum scour depth is approximately 8.7% and 19.1% more than the weir without an obstacle. The scour index in weirs with obstacles is less than in weirs without obstacles, which can reduce the risk of weir overturning. The lowest value of the scour index was observed in the weir with an obstacle height of 0.04 meters, which is approximately 41.2% less than the weir without an obstacle.

L. Babakhah, A. Khoshfetrat, E. Delavari,
Volume 29, Issue 1 (4-2025)
Abstract

Piano key weirs are a new form of labyrinth weirs and exhibit nonlinear characteristics. Due to their high efficiency regarding flow capacity, it is crucial to investigate local scour and identify solutions to mitigate it. Local scour was examined downstream of a trapezoidal piano key weir type B for the first time in this study. The weir was installed 5.50 m from the start of the channel and has a height of 0.20 m, featuring three cycles (three outlet keys, two inlet keys, and two inlet half keys). Three tailwater depths and three different flow rates were also utilized. The maximum scour depth increases with a higher densimetric Froude number and flow rate while decreasing with tailwater depth. The range of the dimensionless parameter for the densimetric Froude number in this study varies between 1 and 2. Additionally, sand and gravel were employed as two types of bed materials. As the diameter of the bed material increases, the maximum scour depth decreases. The scour index for gravel bed material is significantly lower than that for sand material, indicating that the risk of weir overturning is much lower in gravel bed material.

R. Ghasemi Ghasemvand, M. Heidarnejad, A.r. Masjedi, A. Bordbar,
Volume 29, Issue 2 (7-2025)
Abstract

the impact of hydraulic loss on the performance of weirs should not be overlooked. In this study, a laboratory flume measuring 8 meters in length, 0.6 meters in width, and 0.6 meters in height was used to investigate the hydraulic loss of the weirs and their discharge coefficients. The weirs used in this research were of the labyrinth type, featuring both curved and linear designs. Dimensional analysis using the Buckingham method indicated that the discharge coefficient (Cd) relies on parameters such as the hydraulic head ratio (Ht/P), weir shape factor (Sf), hydraulic loss ratio (Hf/P), and Froude number (Fr). The results demonstrated that an increase in hydraulic head leads to a decrease in the discharge coefficient of the weirs. Furthermore, the intensity of flow blade interference over the weirs gradually increases the hydraulic loss with a rising hydraulic head. Hydraulic loss increases up to a certain level of hydraulic head before beginning to decline. Therefore, it can be stated that the hydraulic loss curve for weirs like ARCL exhibits a sinusoidal trend. At a hydraulic head ratio of 0.4, the ARCL weir experiences 227% more hydraulic loss compared to the APKW weir. At a hydraulic head ratio of 0.6, the RCL weir shows 200% more hydraulic loss than the PKW weir. The trend of hydraulic loss variation with increasing Froude numbers for ARCL and RCL weirs is also sinusoidal. The ARCL weir shows the highest hydraulic loss with increasing Froude number compared to the other weirs. All weirs modeled using FLOW-3D software showed values (Cd and Hf/P) that exceeded those from physical modeling, which is significant in terms of safety factors. Moreover, the error rate in numerical modeling varied based on different parameters and conditions, averaging between 10% and 30%. In some cases, labyrinth weirs exhibited higher error rates compared to piano key weirs.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb