N. Zough, M. Shirvani,
Volume 22, Issue 4 (3-2019)
Alginate biopolymer, due to possessing a high capacity and affinity for heavy metals, is a suitable material for the removal of metals from polluted waters; however, the weak structural consistency of alginate hydogels limits the practical application of this natural polymer in water purification practices. In this study, sepiolite clay mineral was used as a solidifier of alginate hydrogel to produce hybrid materials with different clay:alginate ratios (1:2, 1:4 and 1:8). Subsequently, the sorption of Pb by the prepared hybrid materials was studied in different Pb concentrations (25 to
2000 mg/L) and temperatures (15, 25, 35 and 45 °C). The results showed that the Langmuir and freundlich equations could significantly describe Pb sorption data on the sorbents. Based on the Langmuir model estimation, alginate showed and sepiolite showed the highest and lowest capacities for Pb sorption, respectively; also, the hybrids were intermediates in this respect. The capacity and affinity of all sorbents were enhanced with increasing the temperature from 15 to 45 °C. Standard enthalpy changes (ΔH°) were found to be positive, confirming that the process of Pb sorption on the sorbents was endothermic. Positive values were also obtained for the standard entropy changes (ΔS°), suggesting increased randomness at the solid-solution interface during the sorption of Pb ions on the sorbents. The values of the standard free energy change (ΔG°) were negative for all different temperatures, thereby indicating that sorption on the sorbents was spontaneous and favorable. Overall, it could be concluded that modification of alginate with sepiolite might cause the decreased sorption capacity of alginate; however, the hybrid materials are good candidates for the Pb removal from aqueous solutions because of their high sorption capacities.