Search published articles


Showing 1 results for Potassium Extractants

M. Sharifi, M. Kalbasi,
Volume 5, Issue 1 (4-2001)
Abstract

Evaluation of nutrient status in soil is important from nutritional, environmental and economical aspects. Potassium is a very important plant nutrient not only because of its large demand, but also because of its important physiological and biochemical functions in plant. In order to evaluate K availability and common K extractants in the central region of Isfahan Province, surface soil samples from 26 important soil series were taken, out of which 16 soil samples were selected for further study based on their ammonium acetate extractable K and texture. Available K was extracted from the soil samples by NH4OAC (4 methods), CaCl2 (2 methods), NaCl (2 methods), NaOAC, AB-DTPA, Mehlich I, Mehlich III, Morgan-Wolf and HNO3. A green house experiment using corn (Zea mays L.) variety Single-cross 704 as the test plant with 2 treatments (zero and 150 mg/kg K) and three replications was performed with the 16 selected soils to correlate K uptake with K extracted by different extractants.

 From XRD analysis, the dominant clay mineral was found to be Illite. Based on the amount of potassium extracted by these extractants from the soils the extractants used in this research may be divided into three groups: relatively weak extractants including CaCl2, Mehlich I and Morgan-Wolf relatively strong extractants including NH4OAC, NaCl (2N), Mehlich III, AB-DTPA, NaOAC and NaCl (1N), the strongest and weakest extractants in this group were NH4OAC and NaCl (1N), respectively and finally, a very strong extractant which includes only HNO3. In each group, the quantities of extracted K showed high correlation with each other. A high and significant correlation was observed between the quantities of K extracted by NH4OAC, AB-DTPA and HNO3. The amount of K extracted by 2N NaCl, 1N NaOAC, 1N NH4OAC, and AB-DTPA was significantly correlated with K taken up by plant and its K concentration. 2N NaCl and 1N NaOAC were selected as the most suitable extractants for K based on their high correlation coefficients with plant uptake (0.79** and 0.72**, respectively) and K concentration in plant (0.86** and 0.85**, respectively). Yield, relative yield and plant response were not significantly correlated with K extracted by different extractants indicating that available K of the selected soils was not a limiting factor for corn growth therefore, it was impossible to determine the critical level of K for corn by the selected extractant.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb