Search published articles


Showing 4 results for Potassium Release

Z. Naderizadeh , H. Khademi ,
Volume 15, Issue 56 (7-2011)
Abstract

Many studies have been carried out on the effect of organic matter on soil physical, chemical, biological, and nutritional properties, including the effect of organic matter on the availability of such elements as P, N and heavy metals. There is, however, no information on the effect of organic matter on potassium uptake from micaceous minerals. The objective of this study was to investigate the effect of organic matter on potassium uptake from micaceous minerals released by alfalfa. An experiment was laid out in a completely randomized design with factorial combination and three replicates. Growth medium was a mixture of quartz sand, micaceous mineral (muscovite or phlogopite) and organic matter (0, 0.5 and 1 %). Rehnani cultivar of alfalfa was used in the experiment. During 120 days of cultivation, plants were irrigated with either complete or K-free nutrient solution and distilled water as needed. At the end of cultivation, plant shoots and roots were separately harvested and their K concentration was measured by flame photometer following dry ash extraction. Under the K-free nutrient solution, a significant increase in biomass occurred in pots containing phlogopite and organic matter as compared to those with no organic matter amendment. Also, under K-free condition, potassium concentration in shoot was above the threshold value only in phlogopite amended pots. There was no significant difference in K concentration among different levels of organic matter in control treatment as well as in muscovite added treatment. Under both nutrient solutions treatments, significant increase of K uptake occurred in pots containing phlogopite and organic matter, as compared to those without it. In contrast, under K free nutrient solution, organic matter amendment could not enhance the K uptake in pots containing dioctahedral mica (muscovite). Root activities and organic matter decomposition appear to have increased rhizosphere acidity which, in turn, facilitate the K release from trioctahedral mica (phlogopite) in K deficient medium. Thus, the effect of organic matter on K release greatly depends on the type of micaceous mineral.
H. R. Owliaie, S. Heydarmah, E. Adhami, M. Najafi Ghiri,
Volume 18, Issue 68 (9-2014)
Abstract

Rate of nonexchangeable K release can significantly influence K availability. Kinetics of K+ release was studied by extraction using 0.01 M CaCl2 in 12 surface calcareous soils of Kohgilouye Province. Results showed that cumulative K release ranged from 89.9 to 460.9 mg kg-1(Average 195.4 mg kg-1). Calcium carbonate, nonexchangeable K, cation exchange capacity and mica showed a significant correlation with K release. Maximum of potassium release was observed in Alfisols, probably because of high amount of clay content and the clay mineral of mica. The amount of K release was in the following order: Alfisols> Entisols> Inceptisols. Elovich, parabulic diffusion and power function equations could reasonably describe the K release kinetics. Fitting the data to these equations indicated that release of K is controlled by diffusion process.
H. Hatami, A. Karimi, A. Fotovat, H. Khademi,
Volume 18, Issue 69 (12-2014)
Abstract

Organic acids play an important role in improving the bioavailability of soil nutrients. The objectives of this study were to determine the effect of oxalic acid on the release of soluble, exchangeable and non-exchangeable forms of K from micaceous minerals and potassium feldspars, and also to investigate the trend of K release by time. A laboratory study was carried out using a completely randomized design with two replicates. Biotite, phlogopite, muscovite, Zanjan and Yazd K-feldspars (< 50 &mu;m size) were treated with 0, 10 and 100 mM of oxalic acid solutions for a period of 5 hours and 20, 60 and 90 days. The amount of K was determined by flame photometer. The results indicated that most amount of soluble, exchangeable and no-exchangeable K was released by 100 mM of oxalic acid. The maximum soluble K (0.86 gKg-1) was released from phlogopite, and the maximum exchangeable and non-exchangeable K (1.5 and 29.6 gKg-1, respectively) were released from biotite. Muscovite with 0.19, 0.34 and 1.41 gKg-1 of soluble, exchangeable and non-exchangeable K, respectively, had the lowest release of K among the studied minerals. The kinetics K release from minerals consisted of two phases. The first phase was relatively rapid and then it had a slow rate until the end of the experiment. Given that the applied concentration of organic acid was high, potassium release during the experiment period did not reach the steady state. Therefore, a longer period of release experiment is suggested.


M. S. Mousavi Dastenaei, H. Khademi,
Volume 18, Issue 70 (3-2015)
Abstract

Few investigations have been carried out on the ability of different plants to take up non-exchangeable potassium (K). The objective of this investigation was to examine the ability of different alfalfa cultivars to absorb K from phlogopite. An experiment was carried out with a completely randomized design with 3 alfalfa cultivars including Pickseed 2065 (MF), Rehnani (R) and Hamadani (H) grown in a quartz sand medium containing <53 micron sized phlogopite under complete and K-free nutrient solutions for a period of 6 months. During the growth period, the shoot was harvested 4 times. At the end of the experiment, the root was also separated from the growth medium and collected. Plant samples were extracted using the dry ash method and their K concentration was determined. Under the K-free nutrient solution, the highest shoot and root K concentration and uptake were found for the MF cultivar. The shoot and root K concentration in this cultivar were respectively 1.6 and 1.5 times higher than those in the R cultivar and 1.8 times greater than those in the H cultivar. The K uptake in the shoot and root of the MF cultivar was respectively 1.6 and 1.9 times higher than that of the H cultivar and 1.6 and 1.5 times higher than that of the R cultivar. Thus, in addition to other parameters, the type of plant variety should be taken into account when K requirement is evaluated.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb