Search published articles


Showing 2 results for Potentially Toxic Elements

F. Beigmohammadi, E. Solgi, M. Soleimani, A.a. Besalatpour,
Volume 26, Issue 3 (12-2022)
Abstract

The industrial areas are located near residential centers in the city of Arak and potentially toxic elements (PTEs) pollution is a serious threat to human health and living organisms in this area. Meanwhile, soil contamination by PTEs is one of the challenges in this region and various studies have been conducted in this area. Meta-analysis studies provide a comprehensive evaluation of the results of a subject. In the present study, soil contamination data for PTEs in the 11 years (2009 to 2020) were studied through the studies conducted in Arak. In this study, the risk, potential toxicity, and carcinogenic and non-carcinogenic risks of PETs were assessed using indices and mathematical relationships. Based on the results of pollution indices, the soil of Arak city in terms of PETs including Zn, Cd, Cr, Ni, As, Pb, Cu, and Hg were categorized into the polluted and highly polluted classes. The soil of the region in terms of PETs has significant ecological risk and acute toxicity. Cadmium, arsenic, and mercury showed the ecological risk of 49.3%, 23.2%, and 18.3% respectively, and nickel, chromium, and arsenic were responsible for 34.7%, 23.03%, and 22.07% of the toxicity potential of PETs in the soil. Arsenic, nickel, and chromium have the highest carcinogenic risk for children in both the ingestion and inhalation pathways, and chromium, arsenic, and nickel have the highest carcinogenic risk from the inhalation pathway for adults. According to the results, the most considerable PETs in the study area including As, Cd, and Pb, and the most important source of their emission in Arak are anthropogenic resources and industries.

B. Attaeian, S. Hosseinzadeh Alikordi, S. Mortazavi,
Volume 28, Issue 2 (8-2024)
Abstract

Mine exploitation has led to the rangeland's destruction. In this study, the phytoremediation of Pb-contaminated soils by Chrysypogon zizanioides was investigated in the soil around the lead mine of Lashkar region, located in Malayer county. In the initial measurement, the amount of soil Pb contamination in the rangeland was estimated to be 600 milligrams per kilogram of dry soil. By evaluating the environmental effects of lead in the region, the coefficients of geoaccumulation index, pollution degree, and potential ecological risk were observed in the infinite to very high range. The research was conducted in a completely randomized design with 4 Pb pollution levels (0, 300, 600, and 1600 mg/kg) in 4 replications in the greenhouse of Malayer University for 130 days. At the end of the period, lead concentration in soil, root, shoot, BCF bioaccumulation index, TF transfer coefficient, shoot, and root productivity in vetiver plants were measured. The results showed the increasing effect of soil Pb concentration on the amount of root and shoot Pb concentrations. At the level of 1600 mg/kg contamination, the Pb concentration in the shoot and root reached 242.94 and 242.02 mg/kg, respectively. At most levels of contamination except the level of 1600 mg/kg, the BCF indicators in the root and shoot and the TF coefficient were less than one. TF <1 indicates the lack of high concentration of Pb in harvesting organs and the health of the aerial production. So, vetiver is recommended for the rangeland reclamation in the study area.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb