Search published articles


Showing 3 results for Pozzolan

J. Abedi Koupai, M. A. Fathi,
Volume 7, Issue 2 (7-2003)
Abstract

Rice husk, an agricultural waste, is produced about 100 million tons annually in the world and 0.5 million tons in Iran. Due to growing environmental concerns about disposal of these wastes, efforts are required to apply the wastes in industry. In this research, the mechanical properties of concrete incorporating rice husk ash (RHA) in sulfate environments (such as irrigation canals) were investigated and the increase in concrete strength was compared with control samples. In order to burn the husks at a controlled temperature to obtain a highly reactive pozzolanic RHA, a furnace was designed and built. The experiments included 405 samples of cubical (707070-mm) and cylindrical (50.8101.6-mm) concrete samples (105 samples for A, B and C treatments, respectively) which were stored in different ages (7, 28, 60, 180 days) under three different conditions (solutions of magnesium, calcium and sodium sulfates). The portions of RHA as cement replacement were 20 and 30 percents for B and C treatments. The results showed that the samples of concrete containing 20 percent RHA as cement replacement had higher compressive and tensile strengths in sulfate environments at 180 days compared with those of control concretes. The concrete samples containing RHA showed sharper gradients compared to control samples of up to 180 days under sulfate conditions. The best portion of RHA in concrete was determined to be 20 percent by weight.
J. Abedi- Koupai , S. S. Eslamian1, S. A. Gohari , S.a Gohari , R. Khodadadi ,
Volume 14, Issue 54 (1-2011)
Abstract

Channel lining is essential to increase resistance against scour, reducing water losses and as a result increase water conveyance efficiency. Since the canal lining has significant costs, selection of type of lining must be made with great care and with considering engineering properties. One of the conventional lining for water conveyance cannel is concrete lining. Because of advantages of concrete lining including durability (about 40 years) and low maintenance costs, this type of lining is the best option in many regions, however the construction expenses is high. So far many researches have been published about the types and the durability of concretes containing synthetic pozzolans. Due to high production of wheat in our country, nano particles of wheat ash sheath (NPWAS) were used. In this study the mechanical properties of concrete (compressive strength, tensile strength and durability) incorporating nano-particles of wheat ash sheath were investigated. The results showed that the compressive and tensile strength of samples incorporating 20 percent of NPWAS has not statistically significant difference (P<0.05) with the values of tensile and compressive strength of control samples. Therefore, the optimum replacement percentage of NPWAS was 20 percent by weight of cement. Moreover, results of durability of concrete samples showed that concrete containing 20 percent NPWAS were more durable than control samples in the magnesium sulfate solution. NPWAS with having 90.56 percent of silicon dioxide, high pozzolanic activity and ability to perform substantial chemical reaction with calcium hydroxide would decrease porosity and increase resistance of concrete.
N. Abbasi, M. Mahdieh, M. H. Davoudi,
Volume 16, Issue 62 (3-2013)
Abstract

Stabilization of the silty sand soils which cover large areas of Iran and world is inevitable as their geotechnical properties are weak. In this research, the effects of different contents of lime and pozzolan admixtures on compressive strength of silty sand soil were investigated. To do this, different treatments were prepared by adding five levels of lime including 0, 1, 3, 5 and 7 percent by weight of silty sand soil, and four levels of pozzolan including 0, 5, 10, and 15 percent. Then, different specimens with 3 replications were remolded and cured for 7, 14 and 28 days and tested for determination of their unconfined compressive strength. Statistical analysis was made using SPSS software and the results showed that addition of lime and pozzolan increases optimum moisture content and decreases maximum dry density of the soil. Moreover, it was found that the addition of lime and pozzolan to the soil increases compressive strength considerably Compared with when applied individually. In this way, the compressive strength of the samples can be increased up to 16 times more than the natural soil strength. Based on the overall results of laboratory tests and statistical analysis, the combination of 3 percent lime and 15 percent pozzolan was determined as the optimum mixture for stabilization of silty sand soils

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb