Showing 3 results for Preferential Flow
H. Emami, G. Savaghebi, M. Shorafa,
Volume 9, Issue 2 (7-2005)
Abstract
Increasing soil contamination by chemicals has become an issue of increasing environmental concern. Leaching of chemicals into and through the vadose zone creats serious problems due to the contamination of the soil matrix, soil solution and groundwater. Therefore, in order to study the effect of the preferential flow, macropores and organic matter on mobility and leaching of the metals such as cadmium lead, and zinc, an experiment was conducted as a factorial-split plot based on the completely randomized design with three replications. Three treatments of the undisturbed soil (U), the disturbed soil (D) and the disturbed soil containing 3 percent organic matter (O) were leached by the solutions with the concentration of 20 mg.L-1 of Cd, Pb, and Zn for a month. Then the concentrations of Cd, Pb and Zn in the leachate were measured at different time intervals. The ANOVA results indicated that the metals had a significant difference in the leachate at 1% and the order of their mobility was: Zn>Pb>Cd. Also, there was a significant difference between different soil treatments at 1% and the concentration of the three metals in U and O treatments was more than their concentrations in D treatment. Furthermore, a significant difference between the time intervals of leaching (pore volumes) was observed at 1%. So that, Cd in leachate of U, O and D treatments indicated a significant difference after leaching for 3, 3 and 5 days, respectively (1%). But, Pb in the leachate of the three soil treatments after leaching for 11 days had a significant difference. Zn concentration only in O treatment had a clear trend at different time intervals of leaching and a significant difference was observed after leaching for 8 days.
E. Amiri, A. A. Mahboubi, M. R. Mosaddeghi, H. Shirani,
Volume 18, Issue 68 (9-2014)
Abstract
In this study, the effect of soil structure under saturated and unsaturated flow conditions on nonreactive bromide (BR) transport was investigated. The soil structure treatments consisted of undisturbed columns (prismatic and granular structures), and disturbed columns (single- grain structure). A constant concentration (C0= 0.005 M) of bromide was supplied on the surface of the columns in a steady-state flow condition. For the saturated flow condition, a flux equal to the highest saturated hydraulic conductivity (Ks) of the columns was applied on all of the columns. To create the unsaturated flow condition, a flux equal to the half of the lowest Ks of the columns was imposed on all of the columns.
The leaching of the columns was followed for five pore volumes (5PV) and the bromide concentration of the effluent was measured at 0.2PV intervals using bromide selective electrode. The breakthrough curve (BTC) of single- grain structure was sigmoidal (S-shaped) and similar to piston-capillry flow form. In contrast, BTCs of the granular and prismatic structures had a steep initial part and later gradual tailed part. The preferential pathways caused the early appearance of bromide in the leachate of columns of these two structures. Tailing of the BTCs might be due to dispersion and diffusion between mobile and immobile water fractions. In saturated condition, the bromide plume appeared earlier than that in the unsaturated condition because of domination of mass flow and rapid macroporous stream. The results demonstrated the importance of soil structure, preferential pathways, and flow conditions in solute and pollutant transport.
M. R. Mirzaei, S. Ruy,
Volume 22, Issue 4 (3-2019)
Abstract
Preferential flow is of great importance in the environment and the human health. So, rapid water transportation and consequently, pollutants and pesticides leak out and get into the groundwater, making it very difficult to measure and quantify. To quantify and describe the preferential flow, two gravity-driven models were used: 1) kinematic wave model (KW) introduced by Germann in 1985), and 2) kinematic dispersive wave (KDW) model developed by applying a second-order correction to the Germann’s model by Di Pietro et al. in 2003. So, the experimental data was obtained using the laboratory mini-rainfall-simulator over cylindrical soil samples at the laboratory. Their parameters were obtained using Solver add-ins in the Excel software. Then, the results were compared using the root-mean-square error (RMSE). The results showed that the KDW model could better predict the preferential flow (with lower RMSE). Also, the regression results showed 1) there was no significant relation between the preferential flow and the total porosity, and 2) there is a significant relation between the preferential flow and the macrospores.