M Motamednia , S.h.r Sadeghi, H Moradi, H Asadi ,
Volume 14, Issue 52 (7-2010)
Abstract
An extensive data collection on precipitation and runoff is required for development and implementation of soil and water projects. The unit hydrograph (UH) is an appropriate base for deriving flood hydrographs and therefore provides comprehensive information for planners and managers. However, UH derivation is not easy job for whole watersheds. The development of UH by using easily accessible rainfall data is then necessary. Besides that, the validity evaluation of different statistical modeling methods in hydrology and UH development has been rarely taken into account. Towards the attempt, the present study was planned to compare the efficiency of different modeling procedures in hydrograph and 2-h representative UH relationship in Kasilian watershed with concentration time of some 10h. The study took place by using 23 storm events occurred during four seasons within 33 years and applying two and multivariable regression models and 36 variables. According to the results, the median of estimated errors in estimation of 2-h UH dependent variables for verification stage varied from 37 to 88%. The results verified the better performance of cubic and linear bivariate models and logarithm-transformed data in multivariable model as well. The efficiency of multivariable models decreased when they were subjected to principle component analysis. The performance of backward method was frequently proved for estimation of dependent variables based on evaluation criteria, whereas the forward was found to be more efficient for time-dependent factors estimation.
Z. Dehghan, S. S. Eslamian, R. Modarres,
Volume 22, Issue 4 (3-2019)
Abstract
Regionalization is one of the useful tools for carrying out effective analyses in regions lacking data or with having only incomplete data. One of the regionalization methods widely used in the hydrological studies is the clustering approach. Moreover, another effective factor on clustering is the degree of importance and participation level for each of these attributes. In this study, it was tried to use a broad range of attributes to compare their performance in regionalization. Then, according to the importance and role of each attribute in regionalization, the appropriate weight for each of the attributes in each category was determined using the principal component analysis (PCA) method, and the effect of this weighting in forming the homogenous regions was investigated by the Ward's clustering method. In this regard, the maximum 24-hour rainfall data of 63 meteorological stations located in Urmia Lake Basin (ULB) was used in this study during a time period of 30 years (1979-2008). Furthermore, seven categories of attributes were defined in order to regionalize the rainfall. The results showed that by considering different attributes and combining them with each other, a different clustering is obtained in each category in terms of the number of clusters and stations. Among seven categories of attributes, it was found that the geographical and climatic-geographical categories of attributes showed a more appropriate clustering over the ULB. Additionally, the weighting of attributes could have more effect on improving homogeneity and forming the independent clusters in most cases in terms of the scattering of station and how to locate over the basin.