Showing 11 results for Quality.
M. Afsharmanesh, J. Pourreza, A. Samie,
Volume 5, Issue 2 (7-2001)
Abstract
This experiment was carried out to study the effect of different levels (3.06, 3.23, 3.4, 3.57 and 3.74%) of calcium and vitamin D3 (2000, 2200 and 2400 IU/kg diet) on eggshell quality of laying hens. In a completely randomized design and in a 5×3 (15 treatments) factorial arrangement, two hundred and forty (240) white leghorn laying hens, strain Hy-Line W36 and 26 weeks old, were divided into 60 replicates, four hens per replicate. The experimental period lasted 90 days until the hens were 38 weeks of age.
The results indicated that shell strength, shell thickness and shell percentage increased significantly (P<0.05) at 3.06% Ca level. Calcium levels had no effect on ash shell percentage. Vitamin D3 did not have a significant (P<0.05) effect on ash shell percentage and calcium shell, but shell strength, shell thickness and shell percentage significantly (P<0.05) increased at 2400 IU/kg diet vitamin D3. Only plasma calcium raised significantly (P<0.05) due to the added vitamin D3. Interaction between vitamin D3 and calcium on shell strength, shell thickness, shell percentage and plasma calcium were significant (P<0.05). Correlation between egg shell quality parameters and blood parameters with calcium and vitamin D3 was significant (P<0.05).
F. Nourbakhsh, A. Jalalian, H. Shariatmadari,
Volume 7, Issue 3 (10-2003)
Abstract
Cation exchange capacity (CEC) is one of the most important chemical characteristics which influences soil quality from different aspects. At the same time, CEC is an input parameter of many computer models being applied in soil science and agriculture. Methods of CEC determination are always time-consuming and laborious. Therefore, developing a model for CEC estimation from other soil properties is essential. The objective of this study was to understand the associations between CEC (as a dependent variable) and sand, silt, clay, organic matter and pH (as independent variables). In this study 464 soil samples from A, B, and C horizons of different soils were used. Results revealed that CEC is negatively correlated with sand (r=-0.389***) and is positively correlated with organic matter (r=0.772***), clay (r= 0.391***) and silt (r= 0.233***). No significant correlation was observed between CEC and pH. Stepwise regression analysis showed that both organic matter and clay enter the model and that coefficients of determination (r2) for the multiple models are higher than those of simple linear correlations. Other parameters could not increase the r2 considerably. Correlation analysis on data from A, B, and C horizons revealed that the CEC of organic matter in different horizons are not the same. Separation of Aridisols could not increase the r2 of the model and the accuracy of the estimations. Correlation studies in acid soils showed that the contribution of organic matter in CEC is much higher than that of clays.
H. Khademi, H. Khayyer,
Volume 8, Issue 2 (7-2004)
Abstract
Understanding the variability of pedological properties as well as the soil quality attributes on different landscape positions in hummocky terrains would result in a better land management in such areas. Despite the importance of such studies, no research has been couducted on the landscape-scale variability of soil quality indices in Iran and most researchers have so far focussed on pedological aspects of soil variability. The objective of this study was to understand the variability of selected soil quality indices at different landscape positions. A systematic grid including 120 points (12x10) with a distance of 30m was laid out in a hummocky rangeland around the city of Semirom. Surface soil samples were taken from 120 points on grid nodes and their organic carbon, microbial respiration rate, phosphatase activity, pH and EC were measured. Also, the thickness of A horizon and the soil moisture content were measured on grid nodes in the field.
The results indicated that the lower slope positions including footslope and toeslope had the highest amount of phosphatase activity, microbial respiration, A horizon thickness, organic carbon, and EC. In contrast, soils occuring on shoulder had the least amount of the above-mentioned properties. Soils on summit and backslope seem to have been moderately degraded. Soil pH showed the opposite trend, as compared to other properties studied. The presence of a great variability in soil quality attributes at the landscape scale can be attributed to differenes in effective moisture that various landscape positions receive, as well as the differenes in soil erosion and deposition rates. This can also be an indication of a severe land degradion due to poor management practices. Since applying different management practices on different landscape positions are practically impossible, to be on the safe side, it is highly recommended to plan conservation practices based on soil quality of the most degraded landscape positions.
M. Soleymani, M. Shahedi,
Volume 10, Issue 1 (4-2006)
Abstract
The Drying process is one of the most important factors which are effective on the milling quality of rice and its economic value. In order to investigate the effect of dryer parameters on milling quality of rice and their relationships, one of the usual rice varieties (Binam) of Gilan province with an average milling quality and the initial moisture content of 20.5% was selected. Drying process was performed on the basis of a complete randomized design with 20 treatments and 3 factors including temprature (at five levels of 30, 40, 50, 60 and 70 °C) , air velocity (at two levels of 0.5 and 2 m/s) and final moisture content of paddy (at two levels of 10.5% and 14% on wet basis equal to 11.7% and 16.3% on dry basis respectively). Results of the experiments indicated that increase of temprature or air velocity reduces drying time but increases drying rate constant (K). It also revealed that decrease of final moisture content of paddy increases drying time significantly, but doesn’t have any significant effect on drying rate constant (K). Correlation test indicated that milling loss (breakage) has a negative relation to drying time and a positive relation to drying rate constant(K), however, bending strength has a positive relation to drying time and a negative relation to constant of K. Regression of qualitative properties of paddy including: milling loss (breakage) and the bending strength over drying time and constant of K revealed that drying time is a better criterion for predicting the mentioned qualitative properties.
F. Kiani, A. Jalalian, A. Pashaee, H. Khademi,
Volume 11, Issue 41 (10-2007)
Abstract
To investigate the degree of forest degradation and the effect of land use change on selected soil quality attributes in loess-derived landforms, samples were taken from different land uses including forest, rangeland, degradated rangeland and farmland in Pasang watershed located in the Galikesh area of Golestan province (37°16'N, 55°30'E). The annual average temperature and mean precipitation of study area were 15°C and 730 mm respectively. Organic matter, pH, EC, CaCO3 and nutrients (N, P, K) as chemical indicators, hydraulic conductivity, bulk density and porosity as physical indicators and soil respiration as biological indicator were measured. The results showed that the amount of organic matter decreased three percent when it was turned from forest to farmland, and increased two percent from farmland to rangeland. The amount of CaCO3 in surface layer of deforested area was more than in the forest soils. The amount of soil N in forest and soil P and K in rangeland were higher than in other land uses. Bulk density and porosity in forest and MWD in rangeland were higher than in other land uses because of the decrease in organic matter due to farming activities. Soil respiration in forest was highest as compared to in other land uses. Difference of enzymes activities (L-asparaginase and Dehydrogenase) compared to microbial respiration indicates that enzymes activity is related to specific biological processes while soil microbial respiration basically depends on the general activity of soil microbial population. It could be concluded that amount of organic matter, soil N, bulk density, porosity, MWD, soil respiration and enzymes activities are suitable indicators for soil quality evaluation in this area.
M. Yoosefi, H. Shariatmadari, M.a. Hajabbasi,
Volume 11, Issue 42 (1-2008)
Abstract
Adopting proper agricultural management and conserving soil organic matter are important components of sustainable agriculture. Soil organic matter content is a key attribute in soil quality. Labile organic matter pools can be considered as suitable indicators of soil quality that are very sensitive to changes in soil management practices. This research was carried out to investigate some organic carbon labile pools as an indicator evaluating the effects of different managements on some quality parameters of two calcareous soils. The study was conducted in 2 locations: 1- plots that receiving 0 (C1), 25 (C2), 50 (C3) and 100 (C4) Mg/ha of manure for five years successively with a cropping rotation of wheat –corn every year and plots under three cropping rotations (C5, C6 and C7) at Lavark experimental farm and 2- inquiry research station of Fozveh at different plots with three different cropping rotations (C8, C9 and C10) with a given cropping history recorded for the last 5 years. Soil samples were taken from the center of each plot and the depths of 0-5 cm and 5-15 cm. Their organic carbon, hot water soluble carbohydrate, particulate organic matter (POM), organic carbon and hot water soluble carbohydrate of POM, mean weight diameter of water stable aggregates were determined. Different managements consisting of different levels of manure and types of cropping rotation had significant effects on the soil characteristics measured. The greateast amount of carbohydrate and aggregate stability was obtained in the plots of 100 Mg/ha of manure in Lavak and in alfalfa plots in Fozveh station. Also, the results showed that aggregate stability has a better correlation with hot water soluble carbohydrate in comparison with other soil organic pools. Therefore, the carbohydrate extracted by hot water may be used as an index to assess the impacts of different agricultural management systems on soil quality.
A. Moshgeli , J. Pourreza, A. Samie,
Volume 12, Issue 43 (4-2008)
Abstract
This experiment was conducted to determine the phosphorus relative bioavailability of eight samples of dicalcium phosphate. Bioavailability of Samples of dicalcium phosphate was evaluated and their effects on performance of laying hens were investigated. Commercial samples of Dicalcium Phosphate were provided from the following manufacturers: Iran Phosphate, Partove Bashash, Godaze, Poya Khojaste, Dan Razy Kimia, Phosphore Iran, Golbar Shimi and Dan Avar. The Parameters measured were shell strength, shell thickness, shell ash percentage, shell percentage, shell calcium and phosphorus percentage, Haugh unit, egg weight, egg production, egg output, feed consumption, feed conversion ratio, tibial ash, and tibial calcium and phosphorus. One hundred and six, and 36 weeks old white Leghorn hens, from strain Hi-line W-36, were randomly allocated to 8 dietary treatments and 4 blocks in a completely randomized block design. The experiment lasted for 3 months, starting in the 36th week and ended in the 48week of age. Shell thickness, shell ash percentage, shell percentage, feed consumption, tibial ash and tibial calcium percentage were significantly different (P< 0.05) among treatments. Effect of experimental period on shell calcium and phosphorus percentage, egg weight, egg production, feed consumption, egg output was significant (P< 0.05). Relative bioavailability of samples ranged from 85 to 105.7%. Overall, samples of Phosphate Iran (F) were considered most effective with regard to relative bioavailability and performance.
M.m Majidi, A Arzani,
Volume 13, Issue 47 (4-2009)
Abstract
Sainfoin (Onobrychis viciifolia Scop.) is a perennial legume widely adapted to environmental conditions and has been successfully used as a pasture and hay forage in Iran. This experiment was carried out to investigate yield potential and genetic variation of morphological, agronomic and qualitative traits using 10 Iranian sainfoin populations. The experiment was conducted as a randomized complete block design with four replications ON Research Farm, Isfahan University of Technology. Results indicated that there are significance differences between populations for most of the traits. The estimates of heritabilities for forage yield, number of stem per plant, number of node and qualitative traits were over 50 percent. The high phenotypic and genotypic coefficients of variability for economic traits showed that a broad genetic diversity in this germplasem can be exploited in breeding programs. Significant differences were found among cuts and cut × population interaction for all characters. The third harvest produced 41.6 percent of total hay yield. Evaluation of traits related to forage quality revealed that the highest proportion of leaf to stem belong to Sarab and Oromieh populations (6.28 and 6.82, respectively). Crude protein percentage was significantly different among cultivars and Golpayegan population had the highest value for Crude protein percentage. Feridan, Khonsar and Golpayegan populations produced the highest dry matter yield in the first, second and third cut, respectively. These populations were found as the high potential accessions, which can be used as a source for agronomic and plant breeding research in the region.
M. Moghadas, A. R. Estabragh , J. Abdollahi,
Volume 16, Issue 62 (3-2013)
Abstract
Expansive soils swell and shrink periodically when subjected to seasonal water content changes. As a result, they are a constant source of problem in the design and construction of foundations. In this study, the behaviour of an expansive soil was studied through a number of experiments involving cycles of wetting and drying using three different water qualities. Laboratory tests were performed on statically-compacted samples of an expansive soil in a modified Oedometer under constant surcharge pressure of 10 kPa. Vertical deformation of the soil sample was recorded continuously, and during the test, void ratio and water content of the sample were determined at different stages. The results indicated that the equilibrium condition was reached after about six wetting-drying cycles. It is shown that the swelling potential changes with changes in water quality the saline water reduced the swelling potential of the soil compared to the distilled water during wetting and drying cycles. Furthermore, the results showed that the variations of water content-void ratio paths during wetting-drying were the same (no hysteresis) when the equilibrium condition was achieved
R. Jafari, L. Bakhshandehmehr,
Volume 18, Issue 68 (9-2014)
Abstract
Continuous decline of groundwater quality for agricultural purposes has become a major concern in extensive arid and semi-arid regions. Therefore, mapping the quality of groundwater on a broad scale is an essential step in land management. This study aimed to map spatial distribution of two important groundwater quality indices including EC and SAR in Isfahan province, Iran, using geostatistical techniques. Different techniques such as Kriging, IDW and
RBF were applied to water quality data of 540 groundwater wells to map continuous variations of the EC and SAR indices in Arc GIS 9.3 environment. Among the interpolation methods, the Kriging by circular variogram model performed best and had the lowest RMSe error. Therefore, the produced maps from this technique were classified based on Wilcox method. Results showed that EC varies across the province from 392.2 in the west to about 17917.6 µmmhos/ cm in the northwest and eastern parts of the study area. The highest and lowest SAR values were estimated in the towns of Khour va Biabanak and Semirom, ranging from 38.9 to 0.13, respectively. According to the map of irrigation water quality based on Wilcox method, about 12.13 % of the region was classified as good, 16% as moderate, 17.5% as unsuitable and 54.35% as unusable category. In general, the quality of groundwater in Isfahan province decreases from west to east and also from south to north, especially in playas (non-agricultural lands) where the unusable class is dominant.
P. Heidari, S. Hojati, N. Enayatzamir, A. Rayatpisheh,
Volume 24, Issue 3 (11-2020)
Abstract
The objective of this study was to investigate the impact of land use change (forest and rangelands to agriculture) on some micromorphological indices of soil quality in part of Rakat watershed, southwest of Iran. Accordingly, intact soil samples from 0-15 and 15-30 cm depths were collected from the above-mentioned land uses, and microstructure, type and abundance of voids, redoximorphic features, and humic substances were compared. The results showed that in the natural forest use, most of the voids are in the form of macropores, whereas after their conversion to agriculture, these types of voids have little development. In natural rangelands uses, voids were mainly oriented channels and of macropore type, but after switching from pasture to agriculture, they were mainly of vughy type. The results showed that natural forests (27.73%) and natural grasslands (22.28%) had more abundance of voids than forest to agriculture (19.01%) and grassland to agriculture (18.62%) land uses. In both natural forests and pasture land uses, various types of iron and manganese nodules, coatings, hypo-coatings, and quasi-coatings were significantly higher than agricultural land uses.