Search published articles


Showing 3 results for Rain-Fed

Sh. Zand-Parsa, S. Parvizi, A. R. Sepaskhah, M. Mahbod,
Volume 20, Issue 77 (11-2016)
Abstract

In agricultural development many factors such as weather conditions, soil, fertilizer, irrigation timing and amount are involved that are necessary to be considered by the plant growth simulation models. Therefore, in this study, the values of soil water content at different depths of soil profile, dry matter production and grain yield of winter wheat were simulated using AquaCrop and WSM models. The irrigation treatments were rain-fed, 0/5, 0/8, 1 and 1/2 times of full irrigation conducted in Agricultral College of Shiraz University during 2009-2010 and 2010-2011. The models were calibrated using measured data in the first year of experiment and validated by the second year data. The accuracy of soil water simulation was used to refer to the accuracy of simulated evapotranspiration. The accuracy of soil water content at different layers of root depth in the validation period was good for the WSM model (Normalized Root Mean Squer Error, NRMSE= 0/14). But the AquaCrop model showed less accuracy for soil water content (NRMSE=0/26). However, the values of predicted and measured crop evapotranspiration were close together at full irrigation treatment, the accuracy of AquaCop predictions was decreased with inceasing water stress. WSM model has had a good estimation of the dry matter and grain yield simulation with NRMSE of 0/15 and 0/18, respectively. However, they were simulated with less accuracy in the AquaCrop model with NRMSE of 0/19 and 0/39.


B. Raheli Namain, S. Mortazavi, A. Salman Mahini,
Volume 23, Issue 2 (9-2019)
Abstract

Agriculture production with high quality and adequate income for farmers and the least harmful effects in environment are the main objectives of agriculture optimization. The main objective of this study was ranking, optimization and land allocation of Gonbadkavoos’s Drylands for strategic products such as wheat, barley, oilseed rape‎ and soybean under environment and socio-economic scenarios. Because the available information on fertilizer and pesticide consumption was not sufficient and reliable, this data was collected through face-to-face interviews with farmers. The results showed that some slightly and moderately hazardous pesticides were consumed in study area. In this study, the optimized combination of agriculture products was applied by using the modeling approach and considering environmental and socio-economic aspects in Gonbadkavoos County.‎ This approach uses MCAT software, which is based on multi-criteria techniques and metaheuristic algorithms. The results of the environmental scenario‎ show‎ ed that barley, oilseed rape‎ and soybean, with little difference,‎ had the highest benefit-to-cost ratio and profitability, respectively. The slight difference could be related to the use of fertilizers and pesticides. In the socio-economic scenario, oilseed rape, wheat and barley had the highest benefit-to-cost ratio and land allocation, respectively. The represented approach using the decision support system (MCAT) can help planners to design optimal cropping systems and aid good management of fertilizers and water consumption.

K. Vafaei, O. Bazrafshan, H. Ramezanietedali,
Volume 24, Issue 2 (7-2020)
Abstract

Estimating the ecological water footprint and the virtual water trade in different agricultural crops in arid and semi-arid regions can help better manage the limited water resources.This research calculated temporal and spatial ecological water footprint of rain-fed and irrigated almond production in national and provincial scale using during 2008 to 2014. The results show that annual average water footprint in rainfed almond is 9.2 m3/kg, which the share of green and grey water is 72% and 28%, respectively which Ilam and Kohgiloyeh & Boyerahmad have a largest share in green water footprint with 91% and 90%, respectively. In adition to, in irrigated almond, the annual average water footprint is 11.4 m3/kg, which the share of green, blue and grey water is 0.19%, 71% and 10%, respectively. Sistan & Balouchestan, Khuzestana and Hormozgan have the highest share in blue water footprint. The total volume of water footprint of rain-fed and irrigated almond production is 1923 and 8242 MCM, respectively. Also, results show that about 92 percent of the total volume virtual water (equivalent to 9343 MCM per year) in almond production, has been exported to other countries through the virtual water trade.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb