Search published articles


Showing 2 results for Rainfall Characteristics

R. Mostafazadeh, Sh. Mirzaei, P. Nadiri,
Volume 21, Issue 4 (2-2018)
Abstract

The SCS-CN developed by the USDA Soil Conservation Service is a widely used technique for estimation of direct runoff from rainfall events. The watershed CN represents the hydrological response of watershed as an indicator of watershed potential runoff generation. The aim of this research is determining the CN from recorded rainfall-runoff events in different seasons and analyzing its relationship with rainfall components in the Jafarabad Watershed, Golestan Province. The CN values of 43 simultaneous storm events were determined using SCS-CN model and the available storm events of each season have been separated and the significant differences of CN values were analyzed using ANOVA method. The Triple Diagram Models provided by Surfer software were used to analyze the relationships of CNs and rainfall components. Results showed that the mean values of CN were 60 for summer and winter seasons and the CN values in the spring and autumn seasons were 50 and 65, respectively. The inter-relationships of CN amounts and rainfall characteristic showed that the high values of CNs were related to high rainfall intensities (>10 mm/hr) and rain-storms with total rainfall more than 40 mm. Also the CN values were about >70 for the storm events with 40-80% runoff coefficient values.

A. R. Vaezi, Y. Mazloom Aliabadi,
Volume 22, Issue 1 (6-2018)
Abstract

Water loss and nutrients loss are one of the important signs of natural resource degradation in the catchments. The amount of loss of these resources is affected by several factors including the characteristics of rainfall. In this study, the data of stream discharge (Q), total dissolve solids (TDS), and total nutrient loss ratio (NR) along with rainfall characteristics were analyzed for the events   from1988 to 2002 in the Tahamchai catchment, which is owned by a regional water company. Moreover, soil properties were determined by soil sampling from different points in the catchment surface. Based on the results, there was a significant correlation between Q of the river and rainfall height (r=0.24, p<0.05), while its correlations with the rainfall intensity and duration were not statistically significant. On the one hand, this result was due to the inverse relationship between rainfall intensity and rainfall duration; on the other hand, due to the temporal variations in vthe egetation cover in the area, it controlled Q in the intensive rainfalls. The highest Q was in spring (1.68 m3 sec-1) and March (2.58 m3 sec-1). In this period, rainfall height was high and the rainfalls interval was short. Moreover, vegetation cover was weak, so it could not control surface runoff and reduce Q in the catchment. TDS and NR also significantly varied during the months and their highest values were observed in December (282.55 mg l-1) and (61.77 mg l-1), respectively. Mg2+ had the highest amount of water loss in the catchment area. A negative correlation was found between Q and TDS (r=0.41, p<0.001) and NR (r=0.31, p<0.001). This study revealed that spring and autumn were the sensitive period for water loss and nutrient loss in the catchment, respectively. Therefore, promoting the vegetation cover in early spring and reducing improper agricultural practices (tillage and fertilization) could be substantial strategies contributing to conserving the catchment’s resources.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb