Search published articles


Showing 3 results for Rainfall Intensity

M. Foroumadi, A. R. Vaezi,
Volume 21, Issue 2 (8-2017)
Abstract

Rill erosion is the first step in soil erosion process in the hillslopes, particularly in arid and semiarid regions. This study was conducted to investigate the role of rainfall intensity and raindrop impact on the physical properties of soils and particle detachment capacity (Dc) in a marl soil. Marl soil samples were filled into the flumes with 4 m long and 0.9 m wide and exposed to simulated rainfalls with different intensity varying from 10 mm h-1 to 100 mm h-1. Particle Size Distribution (PSD), aggregate size, porosity, crust thickness, and Dc were determined in each rainfall simulation. The results found that the physical soil properties i.e. PSD, aggregate size, porosity and crust thickness (P< 0.000) were significantly influenced by different rainfall intensities. Also, the rainfall intensity was also an important factor in controlling Dc in the soil. Rainfall intensity of 30 mm.h-1 was recognized as the threshold rainfall intensity for transporting soil particles in the marl soil and rill erosion. An increase in the rainfall intensity was attributed to the increases in the raindrop impacts and in consequence aggregate breakdown, and higher production of concentrated flows in the rills. Raindrop impact is the most important characteristics of the rainfall in the rill erosion and Dc in the marl soil.

A. R. Vaezi, M. Ahmadi,
Volume 21, Issue 3 (11-2017)
Abstract

Modified Universal Soil Loss Equation (MUSLE) is one of soil loss estimation models which has been developed based on the runoff characteristics in the event scale. However, it needs to be evaluated in the plot scale for the semi-arid rainfall events. With this aim, a field study was designed using twenty one plots. Runoff and soil loss were measured using 5-min samples under seven rainfall intensities consisted of 10, 20, 30, 40, 50 60, and 70 mm h-1 for 60 min. Soil loss was estimated using the MUSLE based on the runoff volume (Q) and runoff peak discharge (qp) and the values were compared with the observed values. The estimated soil loss was about 3.89 times bigger than the observed value on average. In order to improve model estimations, the power of rainfall erosivity index was modified from 0.56 to 0.62, (Q qp)0.62. The modification of the MUSLE model improved model efficiency (ME) from -5.5 to 0.47 and decreased the root mean square error from 0.000137 to 0.000031. This study revealed that the MUSLE overestimates soil loss from the small plots in the semi -arid regions. Therefore it is essential to calibrate runoff erosivity index using the data observed in the area. The modified MUSLE can be reliably used to predict soil loss in the small plot scale in semi-arid regions.
 


F. Jahanbakhshi, M. R. Ekhtesasi, A. Talebi, M. Piri,
Volume 22, Issue 2 (9-2018)
Abstract

One of the main sources of runoff in arid and semi-arid mountainous highlands is typically composed of before Quaternary formations. Since the structure and lithology of formations are different, varying formations can have different significance in terms of runoff and sediment. The present study aimed to investigate the sediment production potential and the runoff generation threshold on three formations (Shirkooh Granite, Shale, Sandstone and Conglomerate of Sangestan and Taft Limestone) in Shirkooh mountain slopes. The 60 mm/h rainfall intensity with the 40 minute continuity, according to region rainfall records, and the ability of the rainfall simulator were selected as the basis for the study. Field experiments were conducted in dry conditions based on one square meter plot on rocky slopes with a gradient of 20 to 22 percent and a maximum thickness of 30 cm of soil. The results showed that in 60 mm/h rainfall intensity, the minimum rainfall to produce runoff on Sangestan, Shirkooh and, Taft, was 10, 10.7 and 16.7 mm, respectively. The maximum amount of the sediment was measured on Sangestan, Taft and Shirkooh, respectively. Statistical tests related to runoff and sediment production on all three formations confirmed a significant difference at the 5 % level. In terms of the time required to start runoff, the minimum time was for Sangestan, Shirkooh and Taft, respectively. According to the results, in terms of the potential for runoff generation and sediment production, Sangestan, Shirkooh and Taft can be ranked from high to low levels.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb