Z. Amiri, M. Gheysari, M. R. Mosaddeghi, M. S. Tabatabaei, M. Moradiannezhad,
Volume 23, Issue 2 (9-2019)
Abstract
Location of soil moisture sampling in irrigation management is of special importance due to the spatial variability of soil hydraulic characteristics and the development of root system. The objective of this study was determination of the suitable location for soil moisture sampling in drip-tape irrigation management, which is representative of the average moisture in the soil profile (θavg) as well. For this purpose, soil moisture distribution (θij) at the tassel stage of maize and one irrigation interval (68-73 day after plant) were measured at the end of season. The results showed more than 70% length of the root of plant was located in 30 cm of the soil depth. By accepting ±10% error in relation to the averaged soil moisture, some region of soil profile was determined which was in the acceptable error range and also near the averaged soil moisture (0.9θavg<θRec<1.1θavg). By overlapping θRec in one irrigation interval, the appropriate location for soil moisture sampling was the horizontal distance from drip-tape line to 20 cm and the depth of 10-20 cm from the soil surface. To determine the appropriate place for soil moisture sampling, the development of root system and the maximum concentrated root length density in the soil profile extracting the maximal soil moisture should be taken in to account, parallel with the averaged soil moisture.
A. Safadoust, S. Ghanizadeh, M. Nael,
Volume 26, Issue 1 (5-2022)
Abstract
This study was conducted to investigate the effects of vegetation type (Alfalfa and Wheat) and slope (5% and 20%) on runoff and drainage pollution in clay loam soil. Sampled soils were repacked in the box with one soil drainage outlet and one surface flow outlet and were cultivated by wheat or alfalfa. A solution containing 0.05 M KCl was poured quickly and uniformly, over the surface of each box, after plant growth. Simulated rainfall was applied to the soil box with the intensity of a constant rate of 64 mm h-1 for 2 hours immediately. Then the concentration of Cl- and K+ were measured in the collected samples of runoff and the drainage outlet. Results showed that the measured concentration of K+ was lower than the Cl- concentration as a result of its absorbable property. The breakthrough curves (BTCs) of Cl- and K+ showed that slope and vegetation type affected the transport of Cl- and K+. The peak of the BTCs for Cl- and K+ in runoff ranked in the order of wheat and 20% slope> alfalfa and 20% slope> wheat and 5% slope> alfalfa and 5% slope, and in the drainage changed to alfalfa and 5% slope> wheat and 5% slope> alfalfa and 20% slope> wheat and 20% slope. For each slope, the intensive vegetation cover of alfalfa than wheat considerably reduces Cl- or K+ pollution in runoff; whereas drainage development of larger and deeper root systems was the cause of higher leached concentrations for both tracers. Based on our research changes in soil surface vegetation cover from wheat to alfalfa are suggested in slope land to prevent surface water pollution; although other factors such as the climate, soil texture, and structure should also be considered.