Search published articles


Showing 4 results for Scs

Sayed Farhad Mousavi, Mohammad Nekoei-Meher, Mohammad Mahdavi,
Volume 2, Issue 2 (7-1998)
Abstract

As unit hydrograph is an important item in flood estimation of the rivers and since flood hydrograph and simultaneous rainfall hyetograph is needed to derive a unit hydrograph, hydrologists recommend synthetic unit hydrographs for areas lacking these hydrometeorological data. A research was conducted in the Zayandehrud-dam watershed (Pelasjan sub-basin) to test the efficiency of synthetic unit hydrographs (Snyder, SCS, and Triangular methods) in hydrological evaluations. For the purposes of this study, natural and synthetic unit hydrographs were determined and compared, using all morphologic, hydrometric and rainfall data. The results showed that Triangular and SCS methods fit natural unit hydrographs better than Snyder method does, but peak instantaneous flow is estimated to be higher than the observed flow. So, the constant 2.083 in peak flow equation is recommended to be changed to 1.74 in this watershed. The Snyder method predicts good peak flows, compared with the other two methods. Generally, it is concluded that Triangular, SCS, and Snyder methods are ranked 1 to 3 for determination of synthetic unit hydrographs in this watershed.
R. Mostafazadeh, Sh. Mirzaei, P. Nadiri,
Volume 21, Issue 4 (2-2018)
Abstract

The SCS-CN developed by the USDA Soil Conservation Service is a widely used technique for estimation of direct runoff from rainfall events. The watershed CN represents the hydrological response of watershed as an indicator of watershed potential runoff generation. The aim of this research is determining the CN from recorded rainfall-runoff events in different seasons and analyzing its relationship with rainfall components in the Jafarabad Watershed, Golestan Province. The CN values of 43 simultaneous storm events were determined using SCS-CN model and the available storm events of each season have been separated and the significant differences of CN values were analyzed using ANOVA method. The Triple Diagram Models provided by Surfer software were used to analyze the relationships of CNs and rainfall components. Results showed that the mean values of CN were 60 for summer and winter seasons and the CN values in the spring and autumn seasons were 50 and 65, respectively. The inter-relationships of CN amounts and rainfall characteristic showed that the high values of CNs were related to high rainfall intensities (>10 mm/hr) and rain-storms with total rainfall more than 40 mm. Also the CN values were about >70 for the storm events with 40-80% runoff coefficient values.

Sh. Mohammadi, E. Karimian,
Volume 23, Issue 4 (12-2019)
Abstract

Nowadays, water supply for the sectors of household consumption, agriculture, green spaces and industry is currently one of the most important challenges for governments in many parts of the world, especially in arid and semi-arid climate regions such as Iran. The aim of this study was to simulate the amount of run-off from the daily precipitation for Sarpol-e Zahab city, for the purpose of estimating the required amount of water for the irrigation of the green spaces of the city. In this study. After providing information and using the Digital Elevation Model (DEM) map of city, all individual sub-basins of the basin were produced. All data related to creating and overlaying hydrologic, climatologic and physiographic layers were used according to the HEC-HMS hydrologic model. The run-off depth and flood volume of each sub-basin were obtained through the SCS method. Then the required amount of water for the green areas of Sarpol-e Zahab city was calculated. The efficient rainfall was estimated using four methods including SCS, 80 percentage, reliability, and USDA for each month, separately. Finally, the amount of needed water for the green area was obtained using these four mentioned methods. The results indicated that the role of curve number in the infiltration rate was more than other variants. Impermeability of urban basins and changes was created due to the growth and development of the city such as removal of vegetation, soil compaction, creation of the water collection and leading surface waters, decreasing the amount of water penetrating to soil significantly. The amount of surface water for sub-basins was estimated to be 266000 cubic meters. Besides, the results showed the amount of required water for 5 months of the year (from early May to September late) using four methods of SCS, 80percentage, reliability  and USDA was  equal to 243525, 238062, 267865 and 236458 cubic meters, respectively. The amount of the estimated runoff volume was 266,000 cubic meters. Regarding the area of green spaces in Sarpol-e Zahab city and its daily need of water, this volume of water could  supply the required amount of water to irrigate the green area of the city for five months (From May to September).

S.a.r Esmaili, A. Mosaedi,
Volume 26, Issue 1 (5-2022)
Abstract

In recent decades, population growth, urban sprawl, urban environmental changes, and related issues are one of the significant issues in proper planning to manage the urban environment. One of the issues in urban development is the occurrence of floods and flooding due to heavy rains. In this research, flood modeling was studied in Mashhad Zarkash watercourses. The amount of rainfall for the return period of 10, 25, 50, 100, and 200 years were extracted by CumFreq software using the maximum 24-hour rainfall statistics of three rain gauge stations closer to the Zarkesh, Jagharq, Sar-e-Asyab, and Torqabeh watercourses basins during the statistical years 1364 to 1390. The peak discharge was calculated using the US Soil Protection Organization (SCS) rainfall-runoff method. Zarkesh watercourse is located on the outskirts of Mashhad. River and flood flow modeling was performed using Arc GIS, HEC-GEORAS, and HEC-RAS software in two conditions including structure (bridge) and no structure. Due to urban marginalization, urban development and land use change have greatly expanded in this region. The results of flood simulation showed that flood levels with a return period of 50 years increased by 50000 m2 equal to 22% in the presence of a structure compared to the state without a structure. The results of this research show that the construction of bridges on the river, the roughness coefficient by land use change, and the number of curves due to land permeability changes are effective in the flood zone.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb