Search published articles


Showing 2 results for Smbf

B. Shahinejad, A. Parsaei, H. Yonesi, Z. Shamsi, A. Arshia,
Volume 26, Issue 4 (3-2023)
Abstract

In the present study, the flow rate in flues containing lateral semi-cylinders (SMBF) was simulated and estimated under free and submerged conditions using back vector machine models (SVM), spin multivariate adaptive regression (MARS), and multilayer artificial neural network (MLPNN) model. In free flow mode, the dimensionless parameters extracted from the dimensional analysis include the ratio of upstream flow to throat width and contraction ratio (throat width to channel width), and in the submerged state, in addition to these two parameters, the depth-to-throat width, and bottom-depth parameters upstream depth were used as input and the two-dimensional form of flow rate was used as the output of the models. The results showed that in free flow mode in the validation stage, the MARS model with statistical indices of R2 = 0.985, RMSE = 0.008, MAPE = 0.87%, and the SVM model with statistical indices of  R2 = 0.971, RMSE = 0.0012, MAPE =1.376%, and MLPNN model with statistical indices of R2 = 0.973,  RMSE = 0.011, MAPE = 1.304% have modeled and predicted the flow rate. In the submerged state, the statistical indices of the developed MARS model were R2 = 0.978, RMSE = 0.018, MAPE = 3.6%, and the statistical indices of the SVM model were R2 = 0.988, RMSE = 0.014, 2%. MAPE = 4, and the statistical indicators of the MLPNN model were R2 = 0.966, RMSE = 0.022, and MAPE = 5.7%. In the development of SVM and MLPNN models, radial kernel and hyperbolic tangent functions were used, respectively.

Sh. Kiyani, T. Rajaee, M. Karamdokht Behbahani,
Volume 28, Issue 3 (10-2024)
Abstract

In this research, the hydraulic parameters of flow have been investigated on SMBF flumes in two simple and multiple modes. In this research, Flow3D software was used for the numerical simulation of SMBF flow. The simulations have been performed in three flow rates (5, 15, and 30 liters per second) and three opening rates (0.075, 0.1, and 0.15 meters). The results showed that when multiple SMBF flumes are used instead of simple SMBF flumes, the maximum velocity increased by 12% on average at a flow rate of 5 L/s, 19% at a flow rate of 15 L/s, and 10% at a flow rate of 30 L/s. The energy consumption of multiple SMBF flumes has been reduced on average by 21% at a flow rate of 5 L/s, by 66% at a flow rate of 15 L/s, and by 122% at a flow rate of 30 L/s compared to simple SMBF flumes. Finally, the observations showed that during the productivity of multiple SMBF flumes compared to simple SMBF flumes, the size of eddies has decreased and the number of eddies and the area of flow turbulence have increased.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb