Search published articles


Showing 3 results for Spei

M. Saeidipour, F. Radmanesh, S. Eslamian, M. R. Sharifi,
Volume 23, Issue 2 (9-2019)
Abstract

The current study was conducted to compute SPI and SPET drought indices due to their multi-scale concept and their ability to analyze different time-scales for selected meteorological stations in Karoon Basin. Regionalization of SPI and SPEI Drought indices based on clustering analysis was another aim of this study for hydrological homogenizing. Accordingly, to run test through data and determine similar statistical periods, 18 stations were selected. SPI and SPEI values were plotted in the sequence periods graphs and their relationships were analyzed using the correlation coefficient. The results were compared by Pearson correlation coefficient at the significance level of 0.01. The results showed that correlation coefficients (0.5-0.95) were positive and meaningful for all stations and the correlation coefficient between the two indices were increased by enhancing the time-scales. Also, time-scales enhancement decreased the frequency of dry and wet periods and increased their duration. Through regionalization of basin stations based on clustering analysis, the stations were classified into 7 classes. The results of SPEI regionalization showed that the frequency percentage of the normal class was more than those of dry and wet classes.

S. Banihashemi , S. S. Eslamian, B. Nazari,
Volume 25, Issue 2 (9-2021)
Abstract

The upcoming climate change has become a serious concern for the human society. These changes, caused and aggravated by the industrial activities of the international community and the increase in the concentration of greenhouse gases in the atmosphere, are seen as a threat to the food security and environment. Temperature change and precipitation are studied in the form of different probabilistic scenarios in order to have an outlook for the future. The present study was conducted to address the effects of climate changes on temperature and precipitation in Qazvin plain in the form of five AOGCMs including Hadcm3, CSIRO-MK3, GFDL, CGCM3 and MICROC3.2, and 3 greenhouse gas emission scenarios of A1B, A2 and B1, based on different possible scenario combinations in the next 30 years, 2021-2050 and 2051-2080 (near and far future). On basis of the study results, all 4 target stations, on average, will have experienced a change between two ratios of 0.5 and 1.4 of  the observed precipitation period  by the end of 2050, and the mean temperature will have had a change  between -0.1 to 1.6 °C, relative to the observed period.  By the end of 2080,  the  precipitation will also have fluctuated between the two proportions of 0.5 and 1.7 times of the observed precipitation period and the mean temperature will touch an increase between 0.6 and 2.6 °C. Both SPI and SPEI indices suggest the increment in the number of dry periods in the near and far future. However, the total number of negative sequences differed considering the 3, 12 and 24-month intervals at the stations level. Given the SPEI index, as compared to the base period, the total negative sequences of drought and number of dry periods will increase at 3 stations of Avaj, Bagh-Kowsar and Shahid-rajaei-powerhouse and decrease at Qazvin station in the future; however, SPI gives different results, such that  for Bagh-Kowsar, there will be an increase in both total negative sequences of drought and number of dry periods, as  compared to the baseline period; three other stations will have more dry periods, specifically, but less total negative sequences. The results reported that the drought events would become severe, and the wet events would become extreme in the future.

H. Nazaripour, M. Hamidianpour, M. Khosravi, M. Vazirimehr,
Volume 26, Issue 4 (3-2023)
Abstract

In this study, the decade variability of frequency and severity of drought in Iran has been investigated. The one-month scale data from the standardized precipitation-evapotranspiration index (SPEI 01) in the period 1956 - 2015 have been used. Based on the common numerical thresholds, the characteristics of the frequency and severity of drought for each pixel have been calculated and they are the basis for the analysis of the drought situation. Then, the frequency of drought severity classes was calculated and its trend was investigated using the non-parametric Mann-Kendall test. The findings indicated the spatio-temporal variability of drought frequency and intensity patterns in Iran. The frequency of mild droughts has decreased from south to north and from east to west; while the frequency of more severe droughts has increased from north to south and from west to east. The frequency of mild droughts in the southeast, northwest, and northeast has increased by 5 to 40 percent. While the frequency of more severe droughts in most parts of Iran has increased between 10 and 20 percent. Variability in the frequency of more severe droughts is more pronounced in the Central Plateau catchment area as well as in the Persian Gulf-Oman Sea. The trend of drought intensity is decreasing (drought intensification) at the same time as the prevailing rainfall regime in Iran. A significant increase in drought intensity (wet season intensification) is observed only in southeastern Iran at the same time as the monsoon regime. However, extra-arid and arid regions of southeastern Iran are affected by the frequency and severity of drought and have a high degree of vulnerability.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb