Search published articles


Showing 2 results for Saturated Hydraulic Conductivity.

M. Sarmast, M. H. Farpoor, M. Sarcheshmehpoor, M. Karimian Eghbal,
Volume 18, Issue 68 (9-2014)
Abstract

Biocalcite infilling and bridging in a sandy soil was studied in the present research. Effects of 2 bacterial species (Sporosarcina pasteurii and Sporosarcina ureae), 3 reactant concentrations (0.5, 1.0, and 1.5 M of urea and CaCl2 mixture), and 6 reaction times (12, 24, 48, 96, 192, and 288 hr) on saturated hydraulic conductivity and mechanical strength of a sandy soil were studied as a factorial experiment. Soil samples were selected from sand dunes of Joopar area, Kerman Province. Bacterial inoculums and reactant solutions were daily added to soil columns. Results of the study showed that S. pasteuriihad had a higher effect on decreasing hydraulic conductivity of the treated samples (11.57 cm/h) compared to the blank (41.61 cm/h) than S. ureae. Increasing reaction times (from 12 to 288 hrs) and reactant concentrations (from 0.5 to 1.5 M) decreased hydraulic conductivity by 49 and 16 %, respectively. S. pasteurii increased strength of treated samples up to 2.6 Mpa pressure compared to S. ureae. Reactant concentrations and reaction times increased soil strength significantly (2.13 and 4.1 Mpa, respectively). Micromorphological observation showed calcite crystals bridging soil particles and filling pore spaces.
B. Torabi Farsani, M. Afyuni,
Volume 25, Issue 1 (5-2021)
Abstract

Compost leachate is a liquid resulting from physical, chemical and biological decomposition of organic materials. The main objective of this study was to evaluate the influence of leachate compost on the physical, hydraulic and soil moisture characteristic curves. Also, the effect of leachate on the aerial organ fresh weight of corn was investigated. Leachate was added to clay loam and sandy clay loam soils at the rate of zero, 1.25 and 2.5 weight percent. The soil water characteristic curve and the estimation of the parameters of the van Gnuchten and Brooks and Corey models were performed using RETC software. Leachate increased the bulk density and decreased the available water of the clay loam soil. Only 1.25% of the leachate increased the available water in the sandy clay loam soil. Two levels of leachate decreased the bulk density of sandy clay loam soil. Leachate decreased the saturation hydraulic conductivity of the clay loam and increased this parameter of sandy clay loam soil. Leachate was more successful in increasing the aerial organ fresh weight of corn in the sandy clay loam soil. Therefore, leachate was more useful in sandy clay loam than in clay loam soil, and 1.25% treatment was better in the sandy clay loam soil. Also, the used leachate increased the repellency of both soils. Leachate caused the parameters of van Gnuchten and Brooks and Corey models to increase, as compared to the control in both soils.  


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb