Search published articles


Showing 3 results for Sediment Product

H. R. Moradi, M. Bakhshi Tiregani , S. H. R. Sadeghi,
Volume 16, Issue 62 (3-2013)
Abstract

Climate situation changes over a year cause changes in some soil characteristics and soil sensitivity to erosion. Investigation of these changes and how they impact on erosion can be of particular importance. This study investigated changes in Sediment Productivity and soil factors affecting these changes in Tiregan rangeland located in Daregaz city in Khorasan Razavi province. In this study, using the position of the upper and lower hillside of eastern and western aspects, the sampling with rain simulator was performed. Characteristic features of sediment yield including runoff threshold, runoff volume, sediment and turbidity were measured. Soil samples were taken from each sample rain simulation and features of the initial moisture content, bulk density, electrical conductivity, pH and organic matter were measured. Sample was collected with the same intensity and duration of the instrument with fixed locations, and was repeated in four seasons. In order to obtain the position and orientation of each of the parameters in the data obtained at different seasons, the combined analysis of variance test was used. The effect of each of these parameters and the difference between them were evaluated using the Tukey test, and the graphs in 2007 Excel software were plotted. The results showed that all the parameters of sediment yield during the year have significantly changed. The maximum amount of sediment production rates occurred in autumn and was gradually reduced. Its decreasing in both winter and spring can be attributed to vegetation in the area.
Hamzeh Saeidian, Hamid Reza Moradi,
Volume 17, Issue 64 (9-2013)
Abstract

The type and intensity of soil erosion in a region generally depend on climatic conditions, ups and downs, soil and land use. Of these, land use is most important. Using different systems of ploughing after unconscious and non-scientific change of land use affects soil physicochemical characteristics. This fact especially in marginal lands and mountainous regions is more visible. In order to investigate sensitivity to soil loss and erosion in various land uses of Aghajary deposits, part of Margha catchment with an area of 1609 hectares in Izeh city was selected. This was to determine the relationship between soil loss by rain simulator and some soil physicochemical characteristics like percentage of very fine sand, sand, clay, silt, pH, Ec, moisture, Calcium Carbonate and organic materials in different land uses. Then, sediment sampling in 7 points, three replicates and in various intensities of 0.75, 1 and 1.25 millimeters in minute in range, residential and agricultural land uses was done using rain simulator. In order to investigate effective factors in sediment production and erosion, samples of soil layers (in depth range of 0-20 cm meters) equal to the number of sediments were taken. For statistical analysis, EXCEL and SPSS 11.5 software were used. In total, the amount of runoff in residential land use was highest and in agriculture land use was lowest. The amount of sediment in agriculture land use was highest and in residential land use was lowest. Then, the most important factors in sediment yield were diagnosed by multi regression. The results showed that sediment yield and erodibility in land uses have meaningful differences in various intensities of precipitation. Regression models showed that in the production of sediment in various land uses, from among the measured factors, silt, sand very fine, lime, Ec, organic materials and pH had the greatest role. Sand percentage in the residential land use, and very fine sand and organic matter in agriculture land use had the most important role in sediment production. But in range land use, moisture percentage and pH had the biggest role in sediment production.
S. Yousefi, S.n. Emami, M. Nekooeimehr, S. Mardanian,
Volume 29, Issue 2 (7-2025)
Abstract

In the present study, the Road Sediment Delivery Model (SEDMODL) and Geographic Information System (GIS) were utilized to estimate the average annual sedimentation caused by the forest road network in the oak forests in the west of Iran, Chaharmahal and Bakhtiari Provinces (Nazi forest road with a length of 5171 meters). Sedimentation from the study forest road network was estimated based on three basic factors in the model. Also, 30 erosion benchmarks were installed to measure the erosion and sedimentation rate at different distances from the road and in different parts of the study road and changes were measured during a year. The results showed that the average soil erosion at different distances from the Nazi road based on erosion benchmarks is 5.7 mm per year. In addition, the estimated erosion and sedimentation rate of the entire study road network based on the SEDMODL model is 2875 and 570 tons per year per kilometer, respectively. Model evaluation using erosion benchmarks showed that SEDMODL is a suitable model for estimating soil erosion on forest roads in the west of Iran (R2=0.78 and RMSE=0.73). It should be noted that statistical analysis of erosion hot-spot analysis showed that 39 percent of forest roads in Nazi showed very high erosion. Based on the results of the present study, it is suggested that conservative, protective, and road maintenance measures in areas with high erosion risk should be prioritized by decision-makers.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb