Search published articles


Showing 3 results for Semnan

S.a.a. Hashemi, M. Arab Khedri,
Volume 11, Issue 42 (1-2008)
Abstract

  In order to quantitatively evaluate the sediment yield in ungauged basins, it is necessary to use empirical models. The EPM model, as a model which is using in Iran, has sometimes been evaluated. Most evaluations have often been conducted by using river's sediment information and direct measurements of dam reservoir sedimentation have been less used, while the sediment measurement method on reservoir is more carefully. 9 small watersheds from Semnan province (Iran) were selected in this research. There is a small earth dam which have been built on the outlet of each watershed in the past years that them age is 10 years. These dams have not been weirs since they have been building to now. Therefore total of sediment yield volumes of each watershed are entrapped in the dam reservoirs. The volume of sediments deposited in reservoir were calculated by surveying. Sediment's apparent specific weights were measured in each reservoir and the volume of sediments transformed into sediments weight. By EPM model the volume and weight of sediment yield were estimated. Values of sediment yield measured in reservoirs were compared with estimated values by t-test. The results showed that at level 5%, there was not any significant difference between sediment yield values estimated in reservoirs by EPM model in comparison with values of volume and weight which were measured. But determination of performance and relative root mean square error showed that EPM model has low efficiency for estimation of sediment yield in the case study of watersheds.


S. A. A. Hashemi,
Volume 17, Issue 66 (2-2014)
Abstract

Check dams are considered as main measures for flood and sediment control in watersheds, and their uses have been rapidly increased from 1990 onward in Iran. This research is done in Darjazin watershed in north of semnan city. The check dams have been constructed from 15 years ago in two sub basins of the watershed for flood control in Mahdishar. More than 650 check dams were evaluated for effects on flood. The collected data in the field was fed to ArcGIS software. The effects of these structures on flood reduction were evaluated by HEC-GeoHMS extension and HEC-HMS model. Because of homogeneity of watershed management projects in the basin due to building more check-dams in different watercourses, any flood discharge is related to check dams. Evaluating the effects of check dams on flood by t-test showed significant differences between flood discharge before and after construction of check dams at 5 percent level. So, check dams have been able to reduce flood discharge by 16.7 percent on average.
H. R. Ghazvinian, H. Karami, Y. Dadrasajirlou,
Volume 28, Issue 2 (8-2024)
Abstract

One method used to estimate the evaporation rate involves employing various types of evaporation pans, including the standard Colorado Sunken and Class A evaporation pans. This study aimed to investigate and compare the evaporation rates from two pans, Class A and Colorado Sunken, in Semnan City. The Colorado Sunken evaporation pan was utilized as the test pan, and the test was conducted in an open space near the Faculty of Civil Engineering at Semnan University, located in Semnan City. Evaporation measurements were recorded daily for 123 days, from June 1, 2017, to September 31, 2017. The evaporation amount from the Class A pan was obtained from the synoptic station of Semnan city, situated 2.39 km away from the test site, and was subsequently analyzed. Meteorological data, including maximum and minimum temperature, maximum and minimum relative humidity, wind speed, sunshine hours, and air pressure, were also collected from the Semnan synoptic station and compared with the experimental evaporation data. The results indicated no significant difference in the daily evaporation amount between the Class A pan and the Colorado Sunken pan during the tested periods. The best statistical distribution, based on Kolmogorov–Smirnov test, for the Class A evaporation pan and the buried Colorado pan, were selected as Error with (k-s=0.05019) and Gamma with (k-s=0.05552). The coefficient of determination between the two pans was estimated to be approximately 93%. Further analysis revealed that the rate of evaporation is most closely associated with the maximum daily temperature. Pearson's correlation coefficient for the maximum temperature with the Class A evaporation pan and the Colorado Sunken pan was found to be 0.623 and 0.647, respectively.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb