Search published articles


Showing 10 results for Shahrekord

R. Dehghan, H. Shariatmadari, H. Khademi,
Volume 11, Issue 42 (1-2008)
Abstract

  Studying soil phosphorus fractions is useful in understanding soil pedogenesis as well as soil fertility. In this reseach, 20 soil samples were taken from different depths of 0-30 and 30-60 cm of upper-slope, mid-slope and lower-slope positions of four toposequences in arid (Jei and Ziar in Isfahan) and semiarid (Farokhshahr and Shahrekord) regions. In each toposequence, the soil depth was relatively low at the upper-slope position and increased toward the lower-slope. The soils in upper-slope and mid-slope were under scarce native vegetation where the soil in lower-slope was under farming activities. Soil phosphorus (P) fractionation was carried out using sequential extraction. The total soil phosphorus was in the range of 302-1135 with an average of 715 mg/kg. About 65-89% of total phosphorus were inorganic, and 11-35% organic. The amount of inorganic and organic P in the soil samples was in the range of 204-897 with an average of 571, and 70-238 with an average of 114 mg/kg, respectively. The amount of total, inorganic and organic P increased from upper-slope toward the arable lands and decreased from topsoil to subsoil in all toposequences. In the studied soils, apatite ( Ca10-P ), aluminum phosphates(Al-P), octacalcium phosphates( Ca8-P ), iron phosphates (Fe-P), iron oxides occluded phosphates( OC-P ) and dicalcium phosphates( Ca2-P ) were the major constituents of the soil inorganic phosphates, respectively.


A. Mahdavi , M. R. Nouri Emamzadei, R. Mahdavi Najafabadi, S. H. Tabatabaei,
Volume 15, Issue 56 (7-2011)
Abstract

In recent years, surface water resources in Chaharmahal and Bakhtiari province have decreased and groundwater level has fallen down. Thus, groundwater must be strengthened by surface water resources. The objective of this search was identification of artificial recharge sites thorough Fuzzy Logic in Shahrekord Basin. Effective factors in ground water recharge such as slope, infiltration rate, thickness of unsaturated zone, surface water EC, land use and stream network were determined. They were classified, weighted in software packages Arc View 3.2a and Arc GIS 9.3 and they were integrated using multiplying operator in fuzzy model. The obtained results showed 4.79 % of all areas are suitable and 17.94 % are somewhat suitable in this method. To include the effect of land use parameter, it was overlaid on the final maps, showing a decrease in suitable areas up to 1/3. Generally about 30 points were introduced with priorities A, B, AB as having potential for artificial recharge.
R. Lalehzari, S. H. Tabatabaei,
Volume 17, Issue 65 (12-2013)
Abstract

Shahrekord aquifer is depleted by almost 800 deep and semi-deep wells, the majority of which are agricultural wells and some have urban usage. In southern parts of the plain, the water table has fallen strongly because of immoderate discharge and decreased the quality of water by urban wastewater. The main objective of this study is investigation of subsurface dam construction and its effects on water table in consumption locations, reduction of deliveries costs and interception of contaminant transport. Therefore, the Shahrekord aquifer model was simulated with hydrodynamic coefficients calibration by PMWIN5.3 Software. The southern outlet of plain (near Bahram-Abad village) was selected to study subsurface dam construction, then a horizontal-flow barrier in this place was set with mean hydraulic conductivity equal to 0.5 m/day. Water table situation and nitrate concentration were analyzed using ArcGIS9.2 software before and after dam construction. The results showed that the subsurface dam rises groundwater level in 4 kilometers distance of upstream areas. Also, the available volume of water increased about 1.5 Mm3. Nitrate concentration didn't show to be considerably different from the initial state. But, it is likely that contamination in the storage resource will rise because it is located near Shahrekord water treatment plant and also due to the discharge of wastewater wells.
Y. Safari, I. Esfandiarpour Boroujeni,
Volume 17, Issue 65 (12-2013)
Abstract

In order to study the precision of qualitative land suitability classification method for main irrigated crops (i.e. potato, sugar beet, wheat and alfalfa) in the Shahrekord plain, qualitative land suitability maps were obtained for all the studied crops according to representative pedon analysis using simple limitation method. In the next step, a regular grid sampling consisting of 100 sample points with a distance of 375 m was designed. Then all required analyses were done to recognize the suitability class of these sites for each land use. Finally, land suitability results for all the observation points in each map unit were compared with the results of its representative pedon. The results showed the average of measured compatibility between representative pedon and other observation points in each map unit in class and subclass levels was about 60 % and 38 %, respectively. Due to the generalization of representative pedon analyses to all unit area, the use of soil map units as land suitability units may lead to unsatisfactory results. Therefore, the use of representative pedon is not recommended in sustainable land management and precision agriculture. However, new techniques like geostatistics can be used to improve the conventional soil mapping methods.
S. S. Heshmati, H. Beigi Harchegani,
Volume 18, Issue 69 (12-2014)
Abstract

The aim of this study was to assess the drinking quality of Shahrekord aquifer based on a GWQI (groundwater quality index) within a GIS framework. To do this, samples from 97 wells were analyzed for pH, Electrical Conductance (EC), Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Turbidity, Ca2+, Mg2+, Na+, K+, Cl-, HCO3- and SO42-, and total hardness was also calculated. These water quality parameters were geostatistically mapped. Maps showed that maximum quality of water occurs in the northwest while the lowest quality occurs in the south of aquifer. To calculate GWQI index, each map was difference-normalized and converted to a rank map. Assuming the mean value of each rank map to be the weight of corresponding parameter, a GWQI map was created with values varying from 0 (lowest) to 99 (highest quality). Mean GWQI of 84 indicates a relatively good drinking quality of water in the aquifer. However, based on the GWQI map the quality of water declines from very good (GWQI=87) in northwest to a lower quality (GWQI= 80) in southern part of the aquifer. The lower quality of water in the southern part may have been caused by industrial activities, intensive animal husbandry, presence of wastewater plant, irrigation with treated municipal effluent and also by the inward hydraulic gradient. Map removal sensitivity analysis indicated that TSS and to some extent Na+ were important water parameters in this aquifer, which must be monitored with greater accuracy and frequency.


H. Beigi Harchegani, S. S. Heshmati,
Volume 19, Issue 72 (8-2015)
Abstract

The aim of this paper is to adapt a water quality index for individual samples and to compare the results with that of the original GIS-based approach. Thirteen water quality parameters observed in 97 wells from the Shahrekord aquifer were used. In GIS-based method, quality parameters maps are difference-normalized, ranked and GWQI map is drawn. In derived method, observations from individual wells were separately and similarly treated to obtain WQI for each well. Both GWQI maps displayed similar trends and were highly correlated (R=0.91). While the minimum and mean GWQI for both methods were identical (respectively 81 and 84) the derived method estimated the maximum GWQI slightly lower (7%) and showed up to 6% difference in water quality class coverage. Overall, the derived method GWQI is more correlated with observations and performs better than the GIS-based method, and therefore, can be used for determining the overall quality of individual water samples and without the requirement of samples being spatially distributed.


H. Beigi Harchegani, G. Banitalebi, M. Ghobadinia,
Volume 21, Issue 1 (6-2017)
Abstract

Treated wastewater may influence soil structure, porosity and as a consequence, soil saturated hydraulic conductivity. This study aims to assess the effect of wastewater on saturated hydraulic conductivity; and to determine the suitable soil solids fractal dimension to incorporate into the pedotransfer function by Rawls et al (1993) for estimation of saturated hydraulic conductivity (Ks). Soil saturated hydraulic conductivity was measured by disc permeameter. Soil particle fractal dimension was calculated from linearized forms of mass- time, mass- diameter and mass- diameter as modified by Kravchenko- Zhang (1998) relations. Wastewater irrigation for 13 years increased the saturated hydraulic conductivity three times, from 7 mm/hour to 21 mm/hour, but longer application of wastewater did not further increase it. Rawls et al (1993) pedotransfer produced acceptable and relatively close saturated hydraulic conductivity values to that of disc permeameter when fractal dimension obtained from the linearized forms of mass- diameter and Kravchenko- Zhang relations were used. Therefore, Rawls et al (1993) pedotransfer was capable of reflecting the effect of wastewater application on soil saturated hydraulic conductivity.
 


A. Hematifard, M. Naderi, A. Karimi, J. Mohammadi,
Volume 23, Issue 1 (6-2019)
Abstract

Assessment of soil quality helps to make a balance between soil function and soil resources, improving soil quality and achieving the sustainable agriculture. For the quantitative evaluation of soil quality in the Shahrekord plain, Chaharmahal va Bakhtiari province, 106 compound surficial soil samples (0-25 cm) were collected. After the pre-treatments of soil samples, 11 physico-chemical soil characteristics/indicators as the total data set (TDS) were measured using the standard methods. Statistical analysis showed the usefulness of Principle Component Analysis (PCA) transformation. The minimum data set (MDS) was selected using PCA. Analytical Hierarchy Process (AHP) was carried out for the quantitative determination of indicator priorities and weights. Soil quality of the samples was calculated by introducing TDS and MDS into Integrate Quality Index (IQI) and Nemero Quality Index (NQI). The results showed the soil quality of the land uses was as Rangelands> Drylands<Irrigated croplands. The correlation coefficient between IQI-TDS and IQI-MDS was 0.97, while this value for NQI-TDS and NQI-MDS was 0.98. The correlation coefficient between IQI-TDS and NQI-TDS was 0.87 and that between IQI-MDS and NQI-MDS was 0.91. Classification of the resulted soil quality map IQI-TDS revealed that 12.5 % and 15.5 % of the plain were in very high and low quality conditions, respectively.

N. Ganji Khorramdel, S. M. R. Hoseini,
Volume 23, Issue 2 (9-2019)
Abstract

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficiency with respect to the existing data. The daily data of two meteorological stations of Shahrekord and Farrokhshahr airport in the dry and cold zones of Shahrekord during the period 2013-2004 was used; these included the minimum and maximum temperature, the average nominal humidity, wind speed at 2 meters height and sunshine hours. %75 of the data were validated, and %25 of the data was used for testing the models. Designed network is a predictive neural network with an active sigmoid tangent function hidden in the layer. In the next step, different wavelets including Haar, db and Sym were applied on the data and the neural network-wavelet was designed. To evaluate the models, the method was used by the Penman-Montith Fao and for all four methods, RMSE, MAE and R statistical indices were calculated and ranked. The results showed that the wave-let- neural network with the db5 wavelet had a better performance than other wavelets, as well as the artificial neural network, multivariate regression and the Hargreaves method. The results of wavelet network modelling with the db5 wavelet in the Farrokhshahr station were calculated to be 0.2668, 0.2067 and 0.998, respectively; at the airport station, these were equal to 0.2138, 0.14 and 0.9989, respectively. The results, therefore, showed that the neural network-wavelet performance was more accurate than the other models studied in this study.

R. Mousavi Zadeh Mojarad, S. H. Tabatabaei, B. Ghorbani, N. Nourmahna,
Volume 23, Issue 3 (12-2019)
Abstract

Soil water content is the most effective factor associated with the hydrophobic and hydrophilic changes in a soil. Water repellency in soils, is not a permanent feature; it can be reached in the dry season and reduced or eliminated in the wet season It can be said that in terms of moisture, there is a critical region that is defined as the threshold moisture content, where in lower moisture, the soil is repellent and in higher moisture, the soil is wet able. The purpose of this study was to investigate soil moisture variations on degree of hydrophobicity and determine the amount of threshold water content in soil samples of wetland around Shahr-e-Kord. In this study, some samples of Shahr- e-Kord wetland were investigated. After determining the initial moisture content of the soil, the soil hydrophobicity conditions were determined by determining the time of water droplet penetration (WDPT). Soil moisture variations were carried out using soil wetting and drying method, and in each step the soil hydrophobicity conditions were tested. Reducing water content in soil samples, led to a change in the degree of hydrophobicity in hydrophobic samples, in one soil hydrophilic soil sample, Reducing water content changed hydrophilic soil to hydrophobic soil. The threshold water content was also observed up to a maximum of 54% volumetric water content at a given point. Based on this, the higher moisture content of the threshold at this point indicates the higher soil potential for runoff generation. Soil analysis showed that soil organic matter had a positive correlation with threshold water content.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb