S. Rajaee, H. A. Alikhani, F. Raiesi,
Volume 11, Issue 41 (10-2007)
Abstract
Azotobacter chroococcum is an important PGPR (Plant Growth Promoting Rhizobacteria) producing compounds needed for plant growth. The aim of this research was to study the effects of different native strains of Azotobacter chroococcum on growth and yield of wheat under greenhouse counditions. Seeds of spring wheat (Triticum aestivum L. var. Pishtaz) were inoculated with some Azotobacter chroococcum strains capable of producing IAA, HCN, sidrophore and fixing molecular nitrogen. The inoculation of wheat with those strains had a positive, significant effect on biological yield, seed protein percentage, thousand seed weight, leaf area, N, P, Fe and Zn uptake, in particular, by wheat. The increased growth of wheat was most likely due to the production of IAA and enhanced nitrogen fixation by inoculated strains. Some strains of Azotobacter chroococcum native to Chaharmahal va Bakhtiari are established as PGPR. Results also support the efficiency of Azotobacter chroococcum as an important biofertilizer in wheat cropping systems. The selected strains had a significant effect on wheat growth and yield, including biological yield and seed quality under greenhouse counditions. This beneficial effect of Azotobacter chroococcum on wheat is attributed mainly to IAA production and, to some extent to non symbiotic nitrogen fixation in the rhizosphere. So, these strains can potentially be used to improve wheat nutrition of micronutrients such as Fe and Zn, in particular.
M. Karamooz, M. Hamidpour,
Volume 22, Issue 1 (6-2018)
Abstract
Siderophores are low molecular weight iron-binding ligands produced by aerobic soil microorganisms and some plants roots. They may also develop complexes with other metals such as Cd, thereby influencing the bio-availability, toxicity and mobility of Cd in the soils and aqueous environments. The main objective of this study was to investigate the effects of desferal siderophore (DFOB) on the adsorption of Cd on muscovite. The adsorption of Cd on muscovite was studied as a function of pH (Cd concentration: 5.0 mg L-1) in the range of 3.0-8.0, as a function of metal concentration (Cd concentration in the range of 1.5-10.0 mg L-1); this was done in the absence and presence of siderophore (DFOB concentration 250 μM) using a 24h batch equilibration experiment. The results of pH dependent experiments showed that the siderophore deceased the adsorption of Cd onto muscovite at pH ≥5. The results of the isotherms experiments also showed that the removal of Cd from solution was affected by siderophore in all equilibrium concentrations of Cd at both pHs. Siderophore decreased the adsorption of Cd by the mineral. The Freundlich and Langmuir isotherms described the equilibrium data satisfactorily. The values of Freundlich (KF) and Langmuir (KL) bonding constants were greater in the suspensions without siderophore, as compared to those containing siderophore, thereby indicating the low adsorption affinity of Cd on muscovite in the presence of the siderophore.